Go to the documentation of this file.
11 using namespace boost::program_options;
15 (
"help",
"Produce help message")
16 (
"inputFile",value<vector<string>>(),
"Input file name. Supported formats are ASCII (.pts, .xyz) and .ply")
17 (
"runtime", value<int>(&
m_runtime)->default_value(3000),
"Overall runtime of the Algorithm. The longer, the (better), default: 3000")
18 (
"basicSteps",value<int>(&
m_basicSteps)->default_value(10),
"Basics step until split, default: 10")
19 (
"numSplits",value<int>(&
m_numSplits)->default_value(5),
"splits per runtime, default: 5")
20 (
"boxFactor",value<float>(&
m_boxFactor)->default_value(0.2),
"scale of initial mesh, default: 1")
21 (
"withCollapse",value<bool>(&
m_withCollapse)->default_value(
true),
"with edge collapse? default: true")
22 (
"learningRate",value<float>(&
m_learningRate)->default_value(0.1),
"learning rate of winner vertex, default: 1")
23 (
"neighborLearningRate",value<float>(&
m_neighborLearningRate)->default_value(0.08),
"learning rate of winner vertex neighbours, default: 0.08")
24 (
"decreaseFactor",value<float>(&
m_decreaseFactor)->default_value(0.999),
"dynamic decrease factor, default start: 1.0")
25 (
"allowMiss",value<int>(&
m_allowMiss)->default_value(7),
"allow miss of vertex, default: 7")
26 (
"collapseThreshold",value<float>(&
m_collapseThreshold)->default_value(0.3),
"threshold for collapse, default: 0.3")
27 (
"filterChain",value<bool>(&
m_filterChain)->default_value(
false),
"should the filter chain run? default: false")
28 (
"deleteLongEdgesFactor",value<int>(&
m_deleteLongEdgesFactor)->default_value(10),
"0 = no deleting, default: 10")
29 (
"interior",value<bool>(&
m_interior)->default_value(
false),
"false: reconstruct exterior, true: reconstruct interior")
30 (
"balances",value<int>(&
m_balances)->default_value(20),
"Number of TumbleTree-Balances during the reconstruction. default: 20")
31 (
"kd", value<int>(&
m_kd)->default_value(5),
"Number of normals used for distance function evaluation")
32 (
"ki", value<int>(&
m_ki)->default_value(10),
"Number of normals used in the normal interpolation process")
33 (
"kn", value<int>(&
m_kn)->default_value(10),
"Size of k-neighborhood used for normal estimation")
34 (
"pcm,p", value<string>(&
m_pcm)->default_value(
"FLANN"),
"Point cloud manager used for point handling and normal estimation. Choose from {STANN, PCL, NABO}.")
44 return (
m_variables[
"inputFile"].as<vector<string>>())[0];
72 return m_variables[
"neighborLearningRate"].as<
float>();
84 return m_variables[
"collapseThreshold"].as<
float>();
92 return m_variables[
"deleteLongEdgesFactor"].as<
int>();
116 cout <<
"Error: You must specify an input file." << endl;
int getBasicSteps() const
float getNeighborLearningRate() const
int getNumBalances() const
bool getWithCollapse() const
int m_kn
The number of neighbors for normal estimation.
float getBoxFactor() const
int getDeleteLongEdgesFactor() const
float m_collapseThreshold
variables_map m_variables
The internally used variable map.
bool isFilterChain() const
string m_pcm
The used point cloud manager.
float getLearningRate() const
int m_deleteLongEdgesFactor
float getDecreaseFactor() const
int m_kd
The number of neighbors for distance function evaluation.
string getInputFileName() const
int m_ki
The number of neighbors for normal interpolation.
virtual void setup()
Setup internal data structures.
float getCollapseThreshold() const
options_description m_descr
The internally used option description.
float m_neighborLearningRate
lvr2
Author(s): Thomas Wiemann
, Sebastian Pütz , Alexander Mock , Lars Kiesow , Lukas Kalbertodt , Tristan Igelbrink , Johan M. von Behren , Dominik Feldschnieders , Alexander Löhr
autogenerated on Wed Mar 2 2022 00:37:24