|
| compute_overlap.compute_density |
|
int | compute_overlap.debug_I = 1 |
|
int | compute_overlap.debug_J = 0 |
|
bool | compute_overlap.debug_mode = False |
|
| compute_overlap.DP = PM.DataPoints |
|
| compute_overlap.file_info_list = PMIO.FileInfoVector("../data/carCloudList.csv", "../data/") |
|
| compute_overlap.final_inlier_self = self.getDescriptorViewByName("inliers") |
|
| compute_overlap.final_inlier_target = target.getDescriptorViewByName("inliers") |
|
| compute_overlap.inlier_self = self.getDescriptorViewByName("inliers") |
|
| compute_overlap.inlier_target = target.getDescriptorViewByName("inliers") |
|
| compute_overlap.inliers_read = np.zeros((1, reading.features.shape[1])) |
|
| compute_overlap.inliers_ref = np.zeros((1, reference.features.shape[1])) |
|
int | compute_overlap.knn = 20 |
|
int | compute_overlap.knn_all = 50 |
|
| compute_overlap.list_size_I = len(file_info_list) |
|
| compute_overlap.list_size_J = len(file_info_list) |
|
| compute_overlap.matcher_self = PM.get().MatcherRegistrar.create("KDTreeMatcher", params) |
|
| compute_overlap.matcher_target = PM.get().MatcherRegistrar.create("KDTreeVarDistMatcher", params) |
|
| compute_overlap.Matches = PM.Matches |
|
| compute_overlap.max_density = PM.get().DataPointsFilterRegistrar.create("MaxDensityDataPointsFilter") |
|
| compute_overlap.max_search_dist = np.sqrt(self_matches.dists.max(axis=0, keepdims=True), order='F') |
|
string | compute_overlap.output_base_directory = "tests/compute_overlap/" |
|
string | compute_overlap.output_base_file = "test" |
|
| compute_overlap.overlap_results = np.ones((list_size_J, list_size_I), np.float) |
|
| compute_overlap.params = pms.Parametrizable.Parameters() |
|
| compute_overlap.PM = pm.PointMatcher |
|
| compute_overlap.PMIO = pm.PointMatcherIO |
|
| compute_overlap.reading = DP.load(file_info_list[i].readingFileName) |
|
| compute_overlap.reference = DP.load(file_info_list[j].readingFileName) |
|
| compute_overlap.rigid_trans = PM.get().TransformationRegistrar.create("RigidTransformation") |
|
| compute_overlap.self = reading |
|
| compute_overlap.self_matches = Matches(knn, self_pts_count) |
|
| compute_overlap.self_pts_count = self.features.shape[1] |
|
| compute_overlap.self_ratio = np.count_nonzero(final_inlier_self) / final_inlier_self.shape[1] |
|
int | compute_overlap.starting_I = 0 |
|
int | compute_overlap.starting_J = i + 1 |
|
| compute_overlap.sub_sample |
|
| compute_overlap.target = reference |
|
| compute_overlap.target_matches = Matches(knn_all, target_pts_count) |
|
| compute_overlap.target_pts_count = target.features.shape[1] |
|
| compute_overlap.target_ratio = np.count_nonzero(final_inlier_target) / final_inlier_target.shape[1] |
|
| compute_overlap.transformations = PM.Transformations() |
|
| compute_overlap.Tread = np.identity(4) |
|
| compute_overlap.Tref = np.identity(4) |
|