SimpleSensorNoise.cpp
Go to the documentation of this file.
1 // kate: replace-tabs off; indent-width 4; indent-mode normal
2 // vim: ts=4:sw=4:noexpandtab
3 /*
4 
5 Copyright (c) 2010--2018,
6 François Pomerleau and Stephane Magnenat, ASL, ETHZ, Switzerland
7 You can contact the authors at <f dot pomerleau at gmail dot com> and
8 <stephane at magnenat dot net>
9 
10 All rights reserved.
11 
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14  * Redistributions of source code must retain the above copyright
15  notice, this list of conditions and the following disclaimer.
16  * Redistributions in binary form must reproduce the above copyright
17  notice, this list of conditions and the following disclaimer in the
18  documentation and/or other materials provided with the distribution.
19  * Neither the name of the <organization> nor the
20  names of its contributors may be used to endorse or promote products
21  derived from this software without specific prior written permission.
22 
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
24 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
25 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
26 DISCLAIMED. IN NO EVENT SHALL ETH-ASL BE LIABLE FOR ANY
27 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
30 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 
34 */
35 #include "SimpleSensorNoise.h"
36 
37 #include "PointMatcherPrivate.h"
38 
39 #include <string>
40 #include <vector>
41 
42 #include <boost/format.hpp>
43 
44 // SimpleSensorNoiseDataPointsFilter
45 // Constructor
46 template<typename T>
48  PointMatcher<T>::DataPointsFilter("SimpleSensorNoiseDataPointsFilter",
49  SimpleSensorNoiseDataPointsFilter::availableParameters(), params),
50  sensorType(Parametrizable::get<unsigned>("sensorType")),
51  gain(Parametrizable::get<T>("gain"))
52 {
53  std::vector<std::string> sensorNames = {"Sick LMS-1xx",
54  "Hokuyo URG-04LX",
55  "Hokuyo UTM-30LX",
56  "Kinect / Xtion","Sick Tim3xx"};
57  if (sensorType >= sensorNames.size())
58  {
59  throw InvalidParameter(
60  (boost::format("SimpleSensorNoiseDataPointsFilter: Error, sensorType id %1% does not exist.") % sensorType).str());
61  }
62 
63  LOG_INFO_STREAM("SimpleSensorNoiseDataPointsFilter - using sensor noise model: " << sensorNames[sensorType]);
64 }
65 
66 
67 // SimpleSensorNoiseDataPointsFilter
68 // Compute
69 template<typename T>
72 {
73  DataPoints output(input);
74  inPlaceFilter(output);
75  return output;
76 }
77 
78 // In-place filter
79 template<typename T>
81 {
82  cloud.allocateDescriptor("simpleSensorNoise", 1);
83  BOOST_AUTO(noise, cloud.getDescriptorViewByName("simpleSensorNoise"));
84 
85  switch(sensorType)
86  {
87  case 0: // Sick LMS-1xx
88  {
89  noise = computeLaserNoise(0.012, 0.0068, 0.0008, cloud.features);
90  break;
91  }
92  case 1: // Hokuyo URG-04LX
93  {
94  noise = computeLaserNoise(0.028, 0.0013, 0.0001, cloud.features);
95  break;
96  }
97  case 2: // Hokuyo UTM-30LX
98  {
99  noise = computeLaserNoise(0.018, 0.0006, 0.0015, cloud.features);
100  break;
101  }
102  case 3: // Kinect / Xtion
103  {
104  const int dim = cloud.features.rows();
105  const Matrix squaredValues(cloud.features.topRows(dim-1).colwise().norm().array().square());
106  noise = squaredValues*(0.5*0.00285);
107  break;
108  }
109  case 4: // Sick Tim3xx
110  {
111  noise = computeLaserNoise(0.004, 0.0053, -0.0092, cloud.features);
112  break;
113  }
114  default:
115  throw InvalidParameter(
116  (boost::format("SimpleSensorNoiseDataPointsFilter: Error, cannot compute noise for sensorType id %1% .") % sensorType).str());
117  }
118 
119 }
120 
121 template<typename T>
122 typename PointMatcher<T>::Matrix
124  const T minRadius, const T beamAngle, const T beamConst, const Matrix& features)
125 {
126  typedef typename Eigen::Array<T, 2, Eigen::Dynamic> Array2rows;
127 
128  const int nbPoints = features.cols();
129  const int dim = features.rows();
130 
131  Array2rows evalNoise = Array2rows::Constant(2, nbPoints, minRadius);
132  evalNoise.row(0) = beamAngle * features.topRows(dim-1).colwise().norm();
133  evalNoise.row(0) += beamConst;
134 
135  return evalNoise.colwise().maxCoeff();
136 }
137 
138 
141 
142 
SimpleSensorNoiseDataPointsFilter
Sick LMS-xxx noise model.
Definition: SimpleSensorNoise.h:41
DataPointsFilter
PM::DataPointsFilter DataPointsFilter
Definition: pypoint_matcher_helper.h:22
SimpleSensorNoiseDataPointsFilter::SimpleSensorNoiseDataPointsFilter
SimpleSensorNoiseDataPointsFilter(const Parameters &params=Parameters())
Constructor, uses parameter interface.
Definition: SimpleSensorNoise.cpp:47
build_map.T
T
Definition: build_map.py:34
LOG_INFO_STREAM
#define LOG_INFO_STREAM(args)
Definition: PointMatcherPrivate.h:58
PointMatcher::DataPoints::allocateDescriptor
void allocateDescriptor(const std::string &name, const unsigned dim)
Makes sure a descriptor of a given name exists, if present, check its dimensions.
Definition: pointmatcher/DataPoints.cpp:519
PointMatcher
Functions and classes that are dependant on scalar type are defined in this templatized class.
Definition: PointMatcher.h:130
PointMatcherPrivate.h
PointMatcher::DataPoints
A point cloud.
Definition: PointMatcher.h:207
SimpleSensorNoiseDataPointsFilter::Matrix
PointMatcher< T >::Matrix Matrix
Definition: SimpleSensorNoise.h:50
SimpleSensorNoiseDataPointsFilter::inPlaceFilter
virtual void inPlaceFilter(DataPoints &cloud)
Apply these filters to a point cloud without copying.
Definition: SimpleSensorNoise.cpp:80
align_sequence.params
params
Definition: align_sequence.py:13
SimpleSensorNoiseDataPointsFilter::Parameters
Parametrizable::Parameters Parameters
Definition: SimpleSensorNoise.h:45
SimpleSensorNoise.h
PointMatcher::Matrix
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > Matrix
A dense matrix over ScalarType.
Definition: PointMatcher.h:169
InvalidParameter
Parametrizable::InvalidParameter InvalidParameter
Definition: pypoint_matcher_helper.h:42
PointMatcher::DataPoints::features
Matrix features
features of points in the cloud
Definition: PointMatcher.h:331
PointMatcherSupport::Parametrizable
The superclass of classes that are constructed using generic parameters. This class provides the para...
Definition: Parametrizable.h:141
PointMatcherSupport::get
const M::mapped_type & get(const M &m, const typename M::key_type &k)
Definition: Bibliography.cpp:57
icp_advance_api.dim
dim
Definition: icp_advance_api.py:152
SimpleSensorNoiseDataPointsFilter::sensorType
const unsigned sensorType
Definition: SimpleSensorNoise.h:67
SimpleSensorNoiseDataPointsFilter::InvalidParameter
Parametrizable::InvalidParameter InvalidParameter
Definition: SimpleSensorNoise.h:48
SimpleSensorNoiseDataPointsFilter::filter
virtual DataPoints filter(const DataPoints &input)
Apply filters to input point cloud. This is the non-destructive version and returns a copy.
Definition: SimpleSensorNoise.cpp:71
PointMatcher::DataPoints::getDescriptorViewByName
ConstView getDescriptorViewByName(const std::string &name) const
Get a const view on a descriptor by name, throw an exception if it does not exist.
Definition: pointmatcher/DataPoints.cpp:555
SimpleSensorNoiseDataPointsFilter::computeLaserNoise
Matrix computeLaserNoise(const T minRadius, const T beamAngle, const T beamConst, const Matrix &features)
Definition: SimpleSensorNoise.cpp:123


libpointmatcher
Author(s):
autogenerated on Sun Dec 22 2024 03:21:53