cxx11_tensor_striding_sycl.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli Codeplay Software Ltd.
6 // Ralph Potter Codeplay Software Ltd.
7 // Luke Iwanski Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include <iostream>
21 #include <chrono>
22 #include <ctime>
23 
24 #include "main.h"
25 #include <unsupported/Eigen/CXX11/Tensor>
26 
27 using Eigen::array;
28 using Eigen::SyclDevice;
29 using Eigen::Tensor;
30 using Eigen::TensorMap;
31 
32 
33 template <typename DataType, int DataLayout, typename IndexType>
34 static void test_simple_striding(const Eigen::SyclDevice& sycl_device)
35 {
36 
37  Eigen::array<IndexType, 4> tensor_dims = {{2,3,5,7}};
38  Eigen::array<IndexType, 4> stride_dims = {{1,1,3,3}};
39 
40 
42  Tensor<DataType, 4, DataLayout,IndexType> no_stride(tensor_dims);
44 
45 
46  std::size_t tensor_bytes = tensor.size() * sizeof(DataType);
47  std::size_t no_stride_bytes = no_stride.size() * sizeof(DataType);
48  std::size_t stride_bytes = stride.size() * sizeof(DataType);
49  DataType * d_tensor = static_cast<DataType*>(sycl_device.allocate(tensor_bytes));
50  DataType * d_no_stride = static_cast<DataType*>(sycl_device.allocate(no_stride_bytes));
51  DataType * d_stride = static_cast<DataType*>(sycl_device.allocate(stride_bytes));
52 
54  Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_no_stride(d_no_stride, tensor_dims);
56 
57 
58  tensor.setRandom();
60  strides[0] = 1;
61  strides[1] = 1;
62  strides[2] = 1;
63  strides[3] = 1;
64  sycl_device.memcpyHostToDevice(d_tensor, tensor.data(), tensor_bytes);
65  gpu_no_stride.device(sycl_device)=gpu_tensor.stride(strides);
66  sycl_device.memcpyDeviceToHost(no_stride.data(), d_no_stride, no_stride_bytes);
67 
68  //no_stride = tensor.stride(strides);
69 
70  VERIFY_IS_EQUAL(no_stride.dimension(0), 2);
71  VERIFY_IS_EQUAL(no_stride.dimension(1), 3);
72  VERIFY_IS_EQUAL(no_stride.dimension(2), 5);
73  VERIFY_IS_EQUAL(no_stride.dimension(3), 7);
74 
75  for (IndexType i = 0; i < 2; ++i) {
76  for (IndexType j = 0; j < 3; ++j) {
77  for (IndexType k = 0; k < 5; ++k) {
78  for (IndexType l = 0; l < 7; ++l) {
79  VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(i,j,k,l));
80  }
81  }
82  }
83  }
84 
85  strides[0] = 2;
86  strides[1] = 4;
87  strides[2] = 2;
88  strides[3] = 3;
89 //Tensor<float, 4, DataLayout> stride;
90 // stride = tensor.stride(strides);
91 
92  gpu_stride.device(sycl_device)=gpu_tensor.stride(strides);
93  sycl_device.memcpyDeviceToHost(stride.data(), d_stride, stride_bytes);
94 
95  VERIFY_IS_EQUAL(stride.dimension(0), 1);
96  VERIFY_IS_EQUAL(stride.dimension(1), 1);
97  VERIFY_IS_EQUAL(stride.dimension(2), 3);
98  VERIFY_IS_EQUAL(stride.dimension(3), 3);
99 
100  for (IndexType i = 0; i < 1; ++i) {
101  for (IndexType j = 0; j < 1; ++j) {
102  for (IndexType k = 0; k < 3; ++k) {
103  for (IndexType l = 0; l < 3; ++l) {
104  VERIFY_IS_EQUAL(tensor(2*i,4*j,2*k,3*l), stride(i,j,k,l));
105  }
106  }
107  }
108  }
109 
110  sycl_device.deallocate(d_tensor);
111  sycl_device.deallocate(d_no_stride);
112  sycl_device.deallocate(d_stride);
113 }
114 
115 template <typename DataType, int DataLayout, typename IndexType>
116 static void test_striding_as_lvalue(const Eigen::SyclDevice& sycl_device)
117 {
118 
119  Eigen::array<IndexType, 4> tensor_dims = {{2,3,5,7}};
120  Eigen::array<IndexType, 4> stride_dims = {{3,12,10,21}};
121 
122 
123  Tensor<DataType, 4, DataLayout, IndexType> tensor(tensor_dims);
124  Tensor<DataType, 4, DataLayout,IndexType> no_stride(stride_dims);
125  Tensor<DataType, 4, DataLayout,IndexType> stride(stride_dims);
126 
127 
128  std::size_t tensor_bytes = tensor.size() * sizeof(DataType);
129  std::size_t no_stride_bytes = no_stride.size() * sizeof(DataType);
130  std::size_t stride_bytes = stride.size() * sizeof(DataType);
131 
132  DataType * d_tensor = static_cast<DataType*>(sycl_device.allocate(tensor_bytes));
133  DataType * d_no_stride = static_cast<DataType*>(sycl_device.allocate(no_stride_bytes));
134  DataType * d_stride = static_cast<DataType*>(sycl_device.allocate(stride_bytes));
135 
136  Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_tensor(d_tensor, tensor_dims);
137  Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_no_stride(d_no_stride, stride_dims);
138  Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_stride(d_stride, stride_dims);
139 
140  //Tensor<float, 4, DataLayout> tensor(2,3,5,7);
141  tensor.setRandom();
143  strides[0] = 2;
144  strides[1] = 4;
145  strides[2] = 2;
146  strides[3] = 3;
147 
148 // Tensor<float, 4, DataLayout> result(3, 12, 10, 21);
149 // result.stride(strides) = tensor;
150  sycl_device.memcpyHostToDevice(d_tensor, tensor.data(), tensor_bytes);
151  gpu_stride.stride(strides).device(sycl_device)=gpu_tensor;
152  sycl_device.memcpyDeviceToHost(stride.data(), d_stride, stride_bytes);
153 
154  for (IndexType i = 0; i < 2; ++i) {
155  for (IndexType j = 0; j < 3; ++j) {
156  for (IndexType k = 0; k < 5; ++k) {
157  for (IndexType l = 0; l < 7; ++l) {
158  VERIFY_IS_EQUAL(tensor(i,j,k,l), stride(2*i,4*j,2*k,3*l));
159  }
160  }
161  }
162  }
163 
164  array<IndexType, 4> no_strides;
165  no_strides[0] = 1;
166  no_strides[1] = 1;
167  no_strides[2] = 1;
168  no_strides[3] = 1;
169 // Tensor<float, 4, DataLayout> result2(3, 12, 10, 21);
170 // result2.stride(strides) = tensor.stride(no_strides);
171 
172  gpu_no_stride.stride(strides).device(sycl_device)=gpu_tensor.stride(no_strides);
173  sycl_device.memcpyDeviceToHost(no_stride.data(), d_no_stride, no_stride_bytes);
174 
175  for (IndexType i = 0; i < 2; ++i) {
176  for (IndexType j = 0; j < 3; ++j) {
177  for (IndexType k = 0; k < 5; ++k) {
178  for (IndexType l = 0; l < 7; ++l) {
179  VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(2*i,4*j,2*k,3*l));
180  }
181  }
182  }
183  }
184  sycl_device.deallocate(d_tensor);
185  sycl_device.deallocate(d_no_stride);
186  sycl_device.deallocate(d_stride);
187 }
188 
189 
190 template <typename Dev_selector> void tensorStridingPerDevice(Dev_selector& s){
191  QueueInterface queueInterface(s);
192  auto sycl_device=Eigen::SyclDevice(&queueInterface);
193  test_simple_striding<float, ColMajor, int64_t>(sycl_device);
194  test_simple_striding<float, RowMajor, int64_t>(sycl_device);
195  test_striding_as_lvalue<float, ColMajor, int64_t>(sycl_device);
196  test_striding_as_lvalue<float, RowMajor, int64_t>(sycl_device);
197 }
198 
199 EIGEN_DECLARE_TEST(cxx11_tensor_striding_sycl) {
200  for (const auto& device :Eigen::get_sycl_supported_devices()) {
202  }
203 }
Eigen::Tensor::dimension
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const
Definition: Tensor.h:101
Eigen::Tensor
The tensor class.
Definition: Tensor.h:63
array
int array[24]
Definition: Map_general_stride.cpp:1
Eigen::internal::strides
EIGEN_ALWAYS_INLINE DSizes< IndexType, NumDims > strides(const DSizes< IndexType, NumDims > &dimensions)
Definition: TensorBlock.h:26
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(cxx11_tensor_striding_sycl)
Definition: cxx11_tensor_striding_sycl.cpp:199
s
RealScalar s
Definition: level1_cplx_impl.h:126
Eigen::array
Definition: EmulateArray.h:21
VERIFY_IS_EQUAL
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
tensorStridingPerDevice
void tensorStridingPerDevice(Dev_selector &s)
Definition: cxx11_tensor_striding_sycl.cpp:190
test_simple_striding
static void test_simple_striding(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_striding_sycl.cpp:34
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
l
static const Line3 l(Rot3(), 1, 1)
Eigen::TensorMap
A tensor expression mapping an existing array of data.
Definition: TensorForwardDeclarations.h:52
size_t
std::size_t size_t
Definition: wrap/pybind11/include/pybind11/detail/common.h:490
Eigen::TensorBase< Tensor< Scalar_, NumIndices_, Options_, IndexType_ > >::setRandom
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor< Scalar_, NumIndices_, Options_, IndexType_ > & setRandom()
Definition: TensorBase.h:996
main.h
Eigen::Tensor::data
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar * data()
Definition: Tensor.h:104
Eigen::Tensor::size
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const
Definition: Tensor.h:103
test_striding_as_lvalue
static void test_striding_as_lvalue(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_striding_sycl.cpp:116
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
CALL_SUBTEST
#define CALL_SUBTEST(FUNC)
Definition: main.h:399


gtsam
Author(s):
autogenerated on Wed Jan 1 2025 04:01:24