cxx11_tensor_patch_sycl.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli Codeplay Software Ltd.
6 // Ralph Potter Codeplay Software Ltd.
7 // Luke Iwanski Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 // Benoit Steiner <benoit.steiner.goog@gmail.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 #define EIGEN_TEST_NO_LONGDOUBLE
16 #define EIGEN_TEST_NO_COMPLEX
17 
18 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
19 #define EIGEN_USE_SYCL
20 
21 #include "main.h"
22 
23 #include <Eigen/CXX11/Tensor>
24 
25 using Eigen::Tensor;
26 
27 template <typename DataType, int DataLayout, typename IndexType>
28 static void test_simple_patch_sycl(const Eigen::SyclDevice& sycl_device){
29 
30  IndexType sizeDim1 = 2;
31  IndexType sizeDim2 = 3;
32  IndexType sizeDim3 = 5;
33  IndexType sizeDim4 = 7;
34  array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
35  array<IndexType, 5> patchTensorRange;
36  if (DataLayout == ColMajor) {
37  patchTensorRange = {{1, 1, 1, 1, sizeDim1*sizeDim2*sizeDim3*sizeDim4}};
38  }else{
39  patchTensorRange = {{sizeDim1*sizeDim2*sizeDim3*sizeDim4,1, 1, 1, 1}};
40  }
41 
43  Tensor<DataType, 5, DataLayout,IndexType> no_patch(patchTensorRange);
44 
45  tensor.setRandom();
46 
47  array<ptrdiff_t, 4> patch_dims;
48  patch_dims[0] = 1;
49  patch_dims[1] = 1;
50  patch_dims[2] = 1;
51  patch_dims[3] = 1;
52 
53  const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
54  size_t patchTensorBuffSize =no_patch.size()*sizeof(DataType);
55  DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
56  DataType* gpu_data_no_patch = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
57 
58  TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
59  TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_no_patch(gpu_data_no_patch, patchTensorRange);
60 
61  sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
62  gpu_no_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims);
63  sycl_device.memcpyDeviceToHost(no_patch.data(), gpu_data_no_patch, patchTensorBuffSize);
64 
65  if (DataLayout == ColMajor) {
66  VERIFY_IS_EQUAL(no_patch.dimension(0), 1);
67  VERIFY_IS_EQUAL(no_patch.dimension(1), 1);
68  VERIFY_IS_EQUAL(no_patch.dimension(2), 1);
69  VERIFY_IS_EQUAL(no_patch.dimension(3), 1);
70  VERIFY_IS_EQUAL(no_patch.dimension(4), tensor.size());
71  } else {
72  VERIFY_IS_EQUAL(no_patch.dimension(0), tensor.size());
73  VERIFY_IS_EQUAL(no_patch.dimension(1), 1);
74  VERIFY_IS_EQUAL(no_patch.dimension(2), 1);
75  VERIFY_IS_EQUAL(no_patch.dimension(3), 1);
76  VERIFY_IS_EQUAL(no_patch.dimension(4), 1);
77  }
78 
79  for (int i = 0; i < tensor.size(); ++i) {
80  VERIFY_IS_EQUAL(tensor.data()[i], no_patch.data()[i]);
81  }
82 
83  patch_dims[0] = 2;
84  patch_dims[1] = 3;
85  patch_dims[2] = 5;
86  patch_dims[3] = 7;
87 
88  if (DataLayout == ColMajor) {
89  patchTensorRange = {{sizeDim1,sizeDim2,sizeDim3,sizeDim4,1}};
90  }else{
91  patchTensorRange = {{1,sizeDim1,sizeDim2,sizeDim3,sizeDim4}};
92  }
93  Tensor<DataType, 5, DataLayout,IndexType> single_patch(patchTensorRange);
94  patchTensorBuffSize =single_patch.size()*sizeof(DataType);
95  DataType* gpu_data_single_patch = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
96  TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_single_patch(gpu_data_single_patch, patchTensorRange);
97 
98  gpu_single_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims);
99  sycl_device.memcpyDeviceToHost(single_patch.data(), gpu_data_single_patch, patchTensorBuffSize);
100 
101  if (DataLayout == ColMajor) {
102  VERIFY_IS_EQUAL(single_patch.dimension(0), 2);
103  VERIFY_IS_EQUAL(single_patch.dimension(1), 3);
104  VERIFY_IS_EQUAL(single_patch.dimension(2), 5);
105  VERIFY_IS_EQUAL(single_patch.dimension(3), 7);
106  VERIFY_IS_EQUAL(single_patch.dimension(4), 1);
107  } else {
108  VERIFY_IS_EQUAL(single_patch.dimension(0), 1);
109  VERIFY_IS_EQUAL(single_patch.dimension(1), 2);
110  VERIFY_IS_EQUAL(single_patch.dimension(2), 3);
111  VERIFY_IS_EQUAL(single_patch.dimension(3), 5);
112  VERIFY_IS_EQUAL(single_patch.dimension(4), 7);
113  }
114 
115  for (int i = 0; i < tensor.size(); ++i) {
116  VERIFY_IS_EQUAL(tensor.data()[i], single_patch.data()[i]);
117  }
118  patch_dims[0] = 1;
119  patch_dims[1] = 2;
120  patch_dims[2] = 2;
121  patch_dims[3] = 1;
122 
123  if (DataLayout == ColMajor) {
124  patchTensorRange = {{1,2,2,1,2*2*4*7}};
125  }else{
126  patchTensorRange = {{2*2*4*7, 1, 2,2,1}};
127  }
128  Tensor<DataType, 5, DataLayout,IndexType> twod_patch(patchTensorRange);
129  patchTensorBuffSize =twod_patch.size()*sizeof(DataType);
130  DataType* gpu_data_twod_patch = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
131  TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_twod_patch(gpu_data_twod_patch, patchTensorRange);
132 
133  gpu_twod_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims);
134  sycl_device.memcpyDeviceToHost(twod_patch.data(), gpu_data_twod_patch, patchTensorBuffSize);
135 
136  if (DataLayout == ColMajor) {
137  VERIFY_IS_EQUAL(twod_patch.dimension(0), 1);
138  VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
139  VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
140  VERIFY_IS_EQUAL(twod_patch.dimension(3), 1);
141  VERIFY_IS_EQUAL(twod_patch.dimension(4), 2*2*4*7);
142  } else {
143  VERIFY_IS_EQUAL(twod_patch.dimension(0), 2*2*4*7);
144  VERIFY_IS_EQUAL(twod_patch.dimension(1), 1);
145  VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
146  VERIFY_IS_EQUAL(twod_patch.dimension(3), 2);
147  VERIFY_IS_EQUAL(twod_patch.dimension(4), 1);
148  }
149 
150  for (int i = 0; i < 2; ++i) {
151  for (int j = 0; j < 2; ++j) {
152  for (int k = 0; k < 4; ++k) {
153  for (int l = 0; l < 7; ++l) {
154  int patch_loc;
155  if (DataLayout == ColMajor) {
156  patch_loc = i + 2 * (j + 2 * (k + 4 * l));
157  } else {
158  patch_loc = l + 7 * (k + 4 * (j + 2 * i));
159  }
160  for (int x = 0; x < 2; ++x) {
161  for (int y = 0; y < 2; ++y) {
162  if (DataLayout == ColMajor) {
163  VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(0,x,y,0,patch_loc));
164  } else {
165  VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(patch_loc,0,x,y,0));
166  }
167  }
168  }
169  }
170  }
171  }
172  }
173 
174  patch_dims[0] = 1;
175  patch_dims[1] = 2;
176  patch_dims[2] = 3;
177  patch_dims[3] = 5;
178 
179  if (DataLayout == ColMajor) {
180  patchTensorRange = {{1,2,3,5,2*2*3*3}};
181  }else{
182  patchTensorRange = {{2*2*3*3, 1, 2,3,5}};
183  }
184  Tensor<DataType, 5, DataLayout,IndexType> threed_patch(patchTensorRange);
185  patchTensorBuffSize =threed_patch.size()*sizeof(DataType);
186  DataType* gpu_data_threed_patch = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
187  TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_threed_patch(gpu_data_threed_patch, patchTensorRange);
188 
189  gpu_threed_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims);
190  sycl_device.memcpyDeviceToHost(threed_patch.data(), gpu_data_threed_patch, patchTensorBuffSize);
191 
192  if (DataLayout == ColMajor) {
193  VERIFY_IS_EQUAL(threed_patch.dimension(0), 1);
194  VERIFY_IS_EQUAL(threed_patch.dimension(1), 2);
195  VERIFY_IS_EQUAL(threed_patch.dimension(2), 3);
196  VERIFY_IS_EQUAL(threed_patch.dimension(3), 5);
197  VERIFY_IS_EQUAL(threed_patch.dimension(4), 2*2*3*3);
198  } else {
199  VERIFY_IS_EQUAL(threed_patch.dimension(0), 2*2*3*3);
200  VERIFY_IS_EQUAL(threed_patch.dimension(1), 1);
201  VERIFY_IS_EQUAL(threed_patch.dimension(2), 2);
202  VERIFY_IS_EQUAL(threed_patch.dimension(3), 3);
203  VERIFY_IS_EQUAL(threed_patch.dimension(4), 5);
204  }
205 
206  for (int i = 0; i < 2; ++i) {
207  for (int j = 0; j < 2; ++j) {
208  for (int k = 0; k < 3; ++k) {
209  for (int l = 0; l < 3; ++l) {
210  int patch_loc;
211  if (DataLayout == ColMajor) {
212  patch_loc = i + 2 * (j + 2 * (k + 3 * l));
213  } else {
214  patch_loc = l + 3 * (k + 3 * (j + 2 * i));
215  }
216  for (int x = 0; x < 2; ++x) {
217  for (int y = 0; y < 3; ++y) {
218  for (int z = 0; z < 5; ++z) {
219  if (DataLayout == ColMajor) {
220  VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(0,x,y,z,patch_loc));
221  } else {
222  VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(patch_loc,0,x,y,z));
223  }
224  }
225  }
226  }
227  }
228  }
229  }
230  }
231  sycl_device.deallocate(gpu_data_tensor);
232  sycl_device.deallocate(gpu_data_no_patch);
233  sycl_device.deallocate(gpu_data_single_patch);
234  sycl_device.deallocate(gpu_data_twod_patch);
235  sycl_device.deallocate(gpu_data_threed_patch);
236 }
237 
238 template<typename DataType, typename dev_Selector> void sycl_tensor_patch_test_per_device(dev_Selector s){
239  QueueInterface queueInterface(s);
240  auto sycl_device = Eigen::SyclDevice(&queueInterface);
241  test_simple_patch_sycl<DataType, RowMajor, int64_t>(sycl_device);
242  test_simple_patch_sycl<DataType, ColMajor, int64_t>(sycl_device);
243 }
244 EIGEN_DECLARE_TEST(cxx11_tensor_patch_sycl)
245 {
246  for (const auto& device :Eigen::get_sycl_supported_devices()) {
247  CALL_SUBTEST(sycl_tensor_patch_test_per_device<float>(device));
248  }
249 }
Eigen::Tensor::dimension
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const
Definition: Tensor.h:101
Eigen::Tensor
The tensor class.
Definition: Tensor.h:63
s
RealScalar s
Definition: level1_cplx_impl.h:126
sycl_tensor_patch_test_per_device
void sycl_tensor_patch_test_per_device(dev_Selector s)
Definition: cxx11_tensor_patch_sycl.cpp:238
Eigen::array
Definition: EmulateArray.h:21
VERIFY_IS_EQUAL
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
DataLayout
static const int DataLayout
Definition: cxx11_tensor_image_patch_sycl.cpp:24
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition: gnuplot_common_settings.hh:12
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(cxx11_tensor_patch_sycl)
Definition: cxx11_tensor_patch_sycl.cpp:244
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
l
static const Line3 l(Rot3(), 1, 1)
Eigen::TensorMap
A tensor expression mapping an existing array of data.
Definition: TensorForwardDeclarations.h:52
pybind_wrapper_test_script.z
z
Definition: pybind_wrapper_test_script.py:61
test_simple_patch_sycl
static void test_simple_patch_sycl(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_patch_sycl.cpp:28
y
Scalar * y
Definition: level1_cplx_impl.h:124
Eigen::TensorBase< Tensor< Scalar_, NumIndices_, Options_, IndexType_ > >::setRandom
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor< Scalar_, NumIndices_, Options_, IndexType_ > & setRandom()
Definition: TensorBase.h:996
main.h
Eigen::Tensor::data
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar * data()
Definition: Tensor.h:104
Eigen::Tensor::size
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const
Definition: Tensor.h:103
Eigen::ColMajor
@ ColMajor
Definition: Constants.h:319
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
CALL_SUBTEST
#define CALL_SUBTEST(FUNC)
Definition: main.h:399


gtsam
Author(s):
autogenerated on Sat Nov 16 2024 04:02:09