11 #ifndef EIGEN_MATRIX_EXPONENTIAL
12 #define EIGEN_MATRIX_EXPONENTIAL
23 template <
typename RealScalar>
64 template <
typename MatA,
typename MatU,
typename MatV>
71 const MatrixType tmp =
b[3] *
A2 +
b[1] * MatrixType::Identity(
A.rows(),
A.cols());
72 U.noalias() =
A * tmp;
73 V =
b[2] *
A2 +
b[0] * MatrixType::Identity(
A.rows(),
A.cols());
81 template <
typename MatA,
typename MatU,
typename MatV>
86 const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
89 const MatrixType tmp =
b[5] *
A4 +
b[3] *
A2 +
b[1] * MatrixType::Identity(
A.rows(),
A.cols());
90 U.noalias() =
A * tmp;
91 V =
b[4] *
A4 +
b[2] *
A2 +
b[0] * MatrixType::Identity(
A.rows(),
A.cols());
99 template <
typename MatA,
typename MatU,
typename MatV>
102 typedef typename MatA::PlainObject
MatrixType;
104 const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
109 +
b[1] * MatrixType::Identity(
A.rows(),
A.cols());
110 U.noalias() =
A * tmp;
111 V =
b[6] *
A6 +
b[4] *
A4 +
b[2] *
A2 +
b[0] * MatrixType::Identity(
A.rows(),
A.cols());
120 template <
typename MatA,
typename MatU,
typename MatV>
123 typedef typename MatA::PlainObject
MatrixType;
125 const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
126 2162160.L, 110880.L, 3960.L, 90.L, 1.L};
132 +
b[1] * MatrixType::Identity(
A.rows(),
A.cols());
133 U.noalias() =
A * tmp;
134 V =
b[8] *
A8 +
b[6] *
A6 +
b[4] *
A4 +
b[2] *
A2 +
b[0] * MatrixType::Identity(
A.rows(),
A.cols());
142 template <
typename MatA,
typename MatU,
typename MatV>
145 typedef typename MatA::PlainObject
MatrixType;
147 const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
148 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
149 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
155 tmp +=
b[7] *
A6 +
b[5] *
A4 +
b[3] *
A2 +
b[1] * MatrixType::Identity(
A.rows(),
A.cols());
156 U.noalias() =
A * tmp;
157 tmp =
b[12] *
A6 +
b[10] *
A4 +
b[8] *
A2;
158 V.noalias() =
A6 * tmp;
159 V +=
b[6] *
A6 +
b[4] *
A4 +
b[2] *
A2 +
b[0] * MatrixType::Identity(
A.rows(),
A.cols());
169 #if LDBL_MANT_DIG > 64
170 template <
typename MatA,
typename MatU,
typename MatV>
171 void matrix_exp_pade17(
const MatA&
A, MatU&
U, MatV&
V)
173 typedef typename MatA::PlainObject
MatrixType;
175 const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
176 100610229646136770560000.L, 15720348382208870400000.L,
177 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
178 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
179 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
180 46512.L, 306.L, 1.L};
188 +
b[1] * MatrixType::Identity(
A.rows(),
A.cols());
189 U.noalias() =
A * tmp;
190 tmp =
b[16] *
A8 +
b[14] *
A6 +
b[12] *
A4 +
b[10] *
A2;
191 V.noalias() = tmp *
A8;
193 +
b[0] * MatrixType::Identity(
A.rows(),
A.cols());
210 template <
typename MatrixType>
213 template <
typename ArgType>
218 const float l1norm =
arg.cwiseAbs().colwise().sum().maxCoeff();
220 if (l1norm < 4.258730016922831
e-001
f) {
222 }
else if (l1norm < 1.880152677804762
e+000
f) {
225 const float maxnorm = 3.925724783138660f;
226 frexp(l1norm / maxnorm, &squarings);
227 if (squarings < 0) squarings = 0;
234 template <
typename MatrixType>
238 template <
typename ArgType>
243 const RealScalar l1norm =
arg.cwiseAbs().colwise().sum().maxCoeff();
245 if (l1norm < 1.495585217958292
e-002) {
247 }
else if (l1norm < 2.539398330063230
e-001) {
249 }
else if (l1norm < 9.504178996162932
e-001) {
251 }
else if (l1norm < 2.097847961257068
e+000) {
255 frexp(l1norm / maxnorm, &squarings);
256 if (squarings < 0) squarings = 0;
263 template <
typename MatrixType>
266 template <
typename ArgType>
269 #if LDBL_MANT_DIG == 53 // double precision
276 const long double l1norm =
arg.cwiseAbs().colwise().sum().maxCoeff();
279 #if LDBL_MANT_DIG <= 64 // extended precision
281 if (l1norm < 4.1968497232266989671
e-003
L) {
283 }
else if (l1norm < 1.1848116734693823091
e-001
L) {
285 }
else if (l1norm < 5.5170388480686700274
e-001
L) {
287 }
else if (l1norm < 1.3759868875587845383
e+000
L) {
290 const long double maxnorm = 4.0246098906697353063L;
291 frexp(l1norm / maxnorm, &squarings);
292 if (squarings < 0) squarings = 0;
297 #elif LDBL_MANT_DIG <= 106 // double-double
299 if (l1norm < 3.2787892205607026992947488108213
e-005
L) {
301 }
else if (l1norm < 6.4467025060072760084130906076332
e-003
L) {
303 }
else if (l1norm < 6.8988028496595374751374122881143
e-002
L) {
305 }
else if (l1norm < 2.7339737518502231741495857201670
e-001
L) {
307 }
else if (l1norm < 1.3203382096514474905666448850278
e+000
L) {
310 const long double maxnorm = 3.2579440895405400856599663723517L;
311 frexp(l1norm / maxnorm, &squarings);
312 if (squarings < 0) squarings = 0;
314 matrix_exp_pade17(
A,
U,
V);
317 #elif LDBL_MANT_DIG <= 113 // quadruple precision
319 if (l1norm < 1.639394610288918690547467954466970
e-005
L) {
321 }
else if (l1norm < 4.253237712165275566025884344433009
e-003
L) {
323 }
else if (l1norm < 5.125804063165764409885122032933142
e-002
L) {
325 }
else if (l1norm < 2.170000765161155195453205651889853
e-001
L) {
327 }
else if (l1norm < 1.125358383453143065081397882891878
e+000
L) {
330 const long double maxnorm = 2.884233277829519311757165057717815L;
331 frexp(l1norm / maxnorm, &squarings);
332 if (squarings < 0) squarings = 0;
334 matrix_exp_pade17(
A,
U,
V);
343 #endif // LDBL_MANT_DIG
350 #if LDBL_MANT_DIG <= 113
354 template <
typename ArgType,
typename ResultType>
357 typedef typename ArgType::PlainObject
MatrixType;
363 result = denom.partialPivLu().solve(numer);
364 for (
int i=0;
i<squarings;
i++)
374 template <
typename ArgType,
typename ResultType>
377 typedef typename ArgType::PlainObject
MatrixType;
380 typedef typename std::complex<RealScalar> ComplexScalar;
381 result =
arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
396 template<
typename Derived>
struct MatrixExponentialReturnValue
397 :
public ReturnByValue<MatrixExponentialReturnValue<Derived> >
410 template <
typename ResultType>
425 template<
typename Derived>
432 template <
typename Derived>
441 #endif // EIGEN_MATRIX_EXPONENTIAL