Go to the documentation of this file.
11 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
12 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
29 template<
typename MatrixType>
61 :
public SolverBase<FullPivHouseholderQR<_MatrixType> >
76 typedef Matrix<StorageIndex, 1,
127 template<
typename InputType>
147 template<
typename InputType>
161 #ifdef EIGEN_PARSED_BY_DOXYGEN
177 template<
typename Rhs>
194 template<
typename InputType>
396 #ifndef EIGEN_PARSED_BY_DOXYGEN
397 template<
typename RhsType,
typename DstType>
398 void _solve_impl(
const RhsType &rhs, DstType &dst)
const;
400 template<
bool Conjugate,
typename RhsType,
typename DstType>
426 template<
typename MatrixType>
430 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
431 eigen_assert(m_qr.rows() == m_qr.cols() &&
"You can't take the determinant of a non-square matrix!");
432 return abs(m_qr.diagonal().prod());
435 template<
typename MatrixType>
438 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
439 eigen_assert(m_qr.rows() == m_qr.cols() &&
"You can't take the determinant of a non-square matrix!");
440 return m_qr.diagonal().cwiseAbs().array().log().sum();
449 template<
typename MatrixType>
450 template<
typename InputType>
458 template<
typename MatrixType>
461 check_template_parameters();
469 m_hCoeffs.resize(
size);
475 m_rows_transpositions.resize(
size);
476 m_cols_transpositions.resize(
size);
477 Index number_of_transpositions = 0;
481 m_nonzero_pivots =
size;
486 Index row_of_biggest_in_corner, col_of_biggest_in_corner;
488 typedef typename Scoring::result_type Score;
490 Score score = m_qr.bottomRightCorner(
rows-
k,
cols-
k)
491 .unaryExpr(Scoring())
492 .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
493 row_of_biggest_in_corner +=
k;
494 col_of_biggest_in_corner +=
k;
496 if(
k==0) biggest = biggest_in_corner;
501 m_nonzero_pivots =
k;
504 m_rows_transpositions.coeffRef(
i) = internal::convert_index<StorageIndex>(
i);
505 m_cols_transpositions.coeffRef(
i) = internal::convert_index<StorageIndex>(
i);
506 m_hCoeffs.coeffRef(
i) =
Scalar(0);
511 m_rows_transpositions.coeffRef(
k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
512 m_cols_transpositions.coeffRef(
k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
513 if(
k != row_of_biggest_in_corner) {
514 m_qr.row(
k).tail(
cols-
k).swap(m_qr.row(row_of_biggest_in_corner).tail(
cols-
k));
515 ++number_of_transpositions;
517 if(
k != col_of_biggest_in_corner) {
518 m_qr.col(
k).swap(m_qr.col(col_of_biggest_in_corner));
519 ++number_of_transpositions;
523 m_qr.col(
k).tail(
rows-
k).makeHouseholderInPlace(m_hCoeffs.coeffRef(
k),
beta);
524 m_qr.coeffRef(
k,
k) =
beta;
530 .applyHouseholderOnTheLeft(m_qr.col(
k).tail(
rows-
k-1), m_hCoeffs.coeffRef(
k), &m_temp.coeffRef(
k+1));
533 m_cols_permutation.setIdentity(
cols);
535 m_cols_permutation.applyTranspositionOnTheRight(
k, m_cols_transpositions.coeff(
k));
537 m_det_pq = (number_of_transpositions%2) ? -1 : 1;
538 m_isInitialized =
true;
541 #ifndef EIGEN_PARSED_BY_DOXYGEN
542 template<
typename _MatrixType>
543 template<
typename RhsType,
typename DstType>
546 const Index l_rank = rank();
556 typename RhsType::PlainObject
c(rhs);
562 c.row(
k).swap(
c.row(m_rows_transpositions.coeff(
k)));
563 c.bottomRightCorner(remainingSize, rhs.cols())
564 .applyHouseholderOnTheLeft(m_qr.col(
k).tail(remainingSize-1),
568 m_qr.topLeftCorner(l_rank, l_rank)
569 .template triangularView<Upper>()
570 .solveInPlace(
c.topRows(l_rank));
572 for(
Index i = 0;
i < l_rank; ++
i) dst.row(m_cols_permutation.indices().coeff(
i)) =
c.row(
i);
573 for(
Index i = l_rank;
i <
cols(); ++
i) dst.row(m_cols_permutation.indices().coeff(
i)).
setZero();
576 template<
typename _MatrixType>
577 template<
bool Conjugate,
typename RhsType,
typename DstType>
580 const Index l_rank = rank();
588 typename RhsType::PlainObject
c(m_cols_permutation.transpose()*rhs);
590 m_qr.topLeftCorner(l_rank, l_rank)
591 .template triangularView<Upper>()
592 .transpose().template conjugateIf<Conjugate>()
593 .solveInPlace(
c.topRows(l_rank));
595 dst.topRows(l_rank) =
c.topRows(l_rank);
596 dst.bottomRows(
rows()-l_rank).setZero();
604 dst.bottomRightCorner(remainingSize, dst.cols())
605 .applyHouseholderOnTheLeft(m_qr.col(
k).tail(remainingSize-1).template conjugateIf<!Conjugate>(),
606 m_hCoeffs.template conjugateIf<Conjugate>().coeff(
k), &temp.
coeffRef(0));
608 dst.row(
k).swap(dst.row(m_rows_transpositions.coeff(
k)));
615 template<
typename DstXprType,
typename MatrixType>
632 template<
typename MatrixType>
struct FullPivHouseholderQRMatrixQReturnType
633 :
public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
646 m_rowsTranspositions(rowsTranspositions)
649 template <
typename ResultType>
654 evalTo(
result, workspace);
657 template <
typename ResultType>
672 .applyHouseholderOnTheLeft(m_qr.col(
k).tail(
rows-
k-1),
conj(m_hCoeffs.coeff(
k)), &workspace.
coeffRef(
k));
681 typename MatrixType::Nested
m_qr;
693 template<
typename MatrixType>
696 eigen_assert(m_isInitialized &&
"FullPivHouseholderQR is not initialized.");
704 template<
typename Derived>
713 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
Expression of the inverse of another expression.
MatrixType::RealScalar logAbsDeterminant() const
Namespace containing all symbols from the Eigen library.
static void check_template_parameters()
internal::plain_col_type< MatrixType >::type ColVectorType
Inverse< QrType > SrcXprType
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op< typename DstXprType::Scalar, typename QrType::Scalar > &)
IntDiagSizeVectorType::Nested m_rowsTranspositions
PermutationMatrix< ColsAtCompileTime, MaxColsAtCompileTime > PermutationType
Matrix< StorageIndex, 1, EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime), RowMajor, 1, EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime, MaxRowsAtCompileTime)> IntDiagSizeVectorType
RealScalar m_prescribedThreshold
IntDiagSizeVectorType m_rows_transpositions
const MatrixType & matrixQR() const
EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
internal::plain_diag_type< MatrixType >::type HCoeffsType
FullPivHouseholderQR(Index rows, Index cols)
Default Constructor with memory preallocation.
SolverStorage StorageKind
FullPivHouseholderQR & compute(const EigenBase< InputType > &matrix)
double beta(double a, double b)
FullPivHouseholderQRMatrixQReturnType(const MatrixType &qr, const HCoeffsType &hCoeffs, const IntDiagSizeVectorType &rowsTranspositions)
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
MatrixType::PlainObject ReturnType
const HCoeffsType & hCoeffs() const
bool isInvertible() const
const PermutationType & colsPermutation() const
Householder rank-revealing QR decomposition of a matrix with full pivoting.
internal::plain_diag_type< MatrixType >::type HCoeffsType
#define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived)
const Inverse< FullPivHouseholderQR > inverse() const
RealScalar maxPivot() const
FullPivHouseholderQR()
Default Constructor.
PermutationType m_cols_permutation
MatrixQReturnType matrixQ(void) const
const EIGEN_DEVICE_FUNC XprTypeNestedCleaned & nestedExpression() const
#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a, b)
bool isSurjective() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
EIGEN_DONT_INLINE void compute(Solver &solver, const MatrixType &A)
Matrix< typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1, MatrixType::MaxRowsAtCompileTime > WorkVectorType
AnnoyingScalar conj(const AnnoyingScalar &x)
internal::plain_row_type< MatrixType >::type RowVectorType
Expression type for return value of FullPivHouseholderQR::matrixQ()
bool m_usePrescribedThreshold
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
RealScalar threshold() const
NumTraits< Scalar >::Real RealScalar
internal::FullPivHouseholderQRMatrixQReturnType< MatrixType > MatrixQReturnType
Pseudo expression representing a solving operation.
HouseholderQR< MatrixXf > qr(A)
FullPivHouseholderQR(EigenBase< InputType > &matrix)
Constructs a QR factorization from a given matrix.
HCoeffsType::Nested m_hCoeffs
void _solve_impl(const RhsType &rhs, DstType &dst) const
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Index dimensionOfKernel() const
void evalTo(ResultType &result, WorkVectorType &workspace) const
Index nonzeroPivots() const
FullPivHouseholderQR(const EigenBase< InputType > &matrix)
Constructs a QR factorization from a given matrix.
The matrix class, also used for vectors and row-vectors.
Base class for all dense matrices, vectors, and expressions.
CleanedUpDerType< DerType >::type() min(const AutoDiffScalar< DerType > &x, const T &y)
FullPivHouseholderQR< MatrixType > QrType
FullPivHouseholderQR< MatrixType >::IntDiagSizeVectorType IntDiagSizeVectorType
MatrixType::PlainObject PlainObject
MatrixType::RealScalar absDeterminant() const
IntDiagSizeVectorType m_cols_transpositions
FullPivHouseholderQR & setThreshold(const RealScalar &threshold)
internal::nested_eval< T, 1 >::type eval(const T &xpr)
FullPivHouseholderQR & setThreshold(Default_t)
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
static constexpr double k
void evalTo(ResultType &result) const
A base class for matrix decomposition and solvers.
const IntDiagSizeVectorType & rowsTranspositions() const
SolverBase< FullPivHouseholderQR > Base
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
gtsam
Author(s):
autogenerated on Wed May 28 2025 03:01:18