10 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
11 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
23 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version=Specialized>
26 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
38 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
51 IsRowMajor = StorageOrder==
RowMajor ? 1 : 0,
52 IsLower = UpLo ==
Lower ? 1 : 0,
53 FirstTriangular = IsRowMajor == IsLower
70 for (
Index j=FirstTriangular ? bound : 0;
71 j<(FirstTriangular ?
size : bound);j+=2)
76 Scalar t0 = cjAlpha * rhs[j];
77 Packet ptmp0 = pset1<Packet>(t0);
78 Scalar t1 = cjAlpha * rhs[j+1];
79 Packet ptmp1 = pset1<Packet>(t1);
82 Packet ptmp2 = pset1<Packet>(t2);
84 Packet ptmp3 = pset1<Packet>(t3);
86 Index starti = FirstTriangular ? 0 : j+2;
89 Index alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
95 res[j] += cj0.
pmul(A1[j], t1);
96 t3 += cj1.
pmul(A1[j], rhs[j]);
100 res[j+1] += cj0.
pmul(A0[j+1],t0);
101 t2 += cj1.
pmul(A0[j+1], rhs[j+1]);
104 for (
Index i=starti; i<alignedStart; ++i)
106 res[i] += cj0.
pmul(A0[i], t0) + cj0.
pmul(A1[i],t1);
107 t2 += cj1.
pmul(A0[i], rhs[i]);
108 t3 += cj1.
pmul(A1[i], rhs[i]);
116 for (
Index i=alignedStart; i<alignedEnd; i+=PacketSize)
118 Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
119 Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
120 Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize;
121 Packet Xi = pload <Packet>(resIt);
123 Xi = pcj0.
pmadd(A0i,ptmp0, pcj0.
pmadd(A1i,ptmp1,Xi));
124 ptmp2 = pcj1.
pmadd(A0i, Bi, ptmp2);
125 ptmp3 = pcj1.
pmadd(A1i, Bi, ptmp3);
126 pstore(resIt,Xi); resIt += PacketSize;
128 for (
Index i=alignedEnd; i<endi; i++)
130 res[i] += cj0.
pmul(A0[i], t0) + cj0.
pmul(A1[i],t1);
131 t2 += cj1.
pmul(A0[i], rhs[i]);
132 t3 += cj1.
pmul(A1[i], rhs[i]);
138 for (
Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound :
size);j++)
142 Scalar t1 = cjAlpha * rhs[j];
145 for (
Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j :
size); i++)
147 res[i] += cj0.
pmul(A0[i], t1);
148 t2 += cj1.
pmul(A0[i], rhs[i]);
150 res[j] +=
alpha * t2;
162 template<
typename Lhs,
int LhsMode,
typename Rhs>
163 struct selfadjoint_product_impl<
Lhs,LhsMode,false,
Rhs,0,true>
177 template<
typename Dest>
184 eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols());
189 Scalar actualAlpha =
alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
190 * RhsBlasTraits::extractScalarFactor(a_rhs);
193 EvalToDest = (Dest::InnerStrideAtCompileTime==1),
194 UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
201 EvalToDest ? dest.data() : static_dest.data());
204 UseRhs ?
const_cast<RhsScalar*
>(rhs.data()) : static_rhs.data());
208 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
210 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
212 MappedDest(actualDestPtr, dest.size()) = dest;
217 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
219 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
226 int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>
::run
229 &lhs.coeffRef(0,0), lhs.outerStride(),
236 dest = MappedDest(actualDestPtr, dest.size());
240 template<
typename Lhs,
typename Rhs,
int RhsMode>
241 struct selfadjoint_product_impl<
Lhs,0,true,
Rhs,RhsMode,false>
246 template<
typename Dest>
260 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H