11 #ifndef EIGEN_INVERSE_IMPL_H
12 #define EIGEN_INVERSE_IMPL_H
22 template<
typename MatrixType,
typename ResultType,
int Size = MatrixType::RowsAtCompileTime>
28 result =
matrix.partialPivLu().inverse();
32 template<
typename MatrixType,
typename ResultType,
int Size = MatrixType::RowsAtCompileTime>
39 template<
typename MatrixType,
typename ResultType>
47 result.coeffRef(0,0) =
Scalar(1) / matrixEval.coeff(0,0);
51 template<
typename MatrixType,
typename ResultType>
55 static inline void run(
64 determinant =
matrix.coeff(0,0);
65 invertible =
abs(determinant) > absDeterminantThreshold;
74 template<
typename MatrixType,
typename ResultType>
80 result.coeffRef(0,0) =
matrix.coeff(1,1) * invdet;
81 result.coeffRef(1,0) = -
matrix.coeff(1,0) * invdet;
82 result.coeffRef(0,1) = -
matrix.coeff(0,1) * invdet;
83 result.coeffRef(1,1) =
matrix.coeff(0,0) * invdet;
86 template<
typename MatrixType,
typename ResultType>
98 template<
typename MatrixType,
typename ResultType>
112 determinant =
matrix.determinant();
113 invertible =
abs(determinant) > absDeterminantThreshold;
114 if(!invertible)
return;
124 template<
typename MatrixType,
int i,
int j>
134 return m.coeff(i1, j1) * m.coeff(i2, j2)
135 - m.coeff(i1, j2) * m.coeff(i2, j1);
138 template<
typename MatrixType,
typename ResultType>
146 result.row(0) = cofactors_col0 * invdet;
147 result.
coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(
matrix) * invdet;
148 result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(
matrix) * invdet;
149 result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(
matrix) * invdet;
150 result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(
matrix) * invdet;
151 result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(
matrix) * invdet;
152 result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(
matrix) * invdet;
155 template<
typename MatrixType,
typename ResultType>
163 cofactors_col0.
coeffRef(0) = cofactor_3x3<MatrixType,0,0>(
matrix);
164 cofactors_col0.
coeffRef(1) = cofactor_3x3<MatrixType,1,0>(
matrix);
165 cofactors_col0.
coeffRef(2) = cofactor_3x3<MatrixType,2,0>(
matrix);
166 const Scalar det = (cofactors_col0.cwiseProduct(
matrix.col(0))).sum();
172 template<
typename MatrixType,
typename ResultType>
187 cofactors_col0.
coeffRef(0) = cofactor_3x3<MatrixType,0,0>(
matrix);
188 cofactors_col0.
coeffRef(1) = cofactor_3x3<MatrixType,1,0>(
matrix);
189 cofactors_col0.
coeffRef(2) = cofactor_3x3<MatrixType,2,0>(
matrix);
190 determinant = (cofactors_col0.cwiseProduct(
matrix.col(0))).sum();
191 invertible =
abs(determinant) > absDeterminantThreshold;
192 if(!invertible)
return;
202 template<
typename Derived>
207 return matrix.coeff(i1,j1)
211 template<
typename MatrixType,
int i,
int j>
228 template<
int Arch,
typename Scalar,
typename MatrixType,
typename ResultType>
234 result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(
matrix);
235 result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(
matrix);
236 result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(
matrix);
237 result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(
matrix);
238 result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(
matrix);
239 result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(
matrix);
240 result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(
matrix);
241 result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(
matrix);
242 result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(
matrix);
243 result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(
matrix);
244 result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(
matrix);
245 result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(
matrix);
246 result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(
matrix);
247 result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(
matrix);
248 result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(
matrix);
249 result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(
matrix);
250 result /= (
matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
254 template<
typename MatrixType,
typename ResultType>
257 MatrixType, ResultType>
261 template<
typename MatrixType,
typename ResultType>
274 determinant =
matrix.determinant();
275 invertible =
abs(determinant) > absDeterminantThreshold;
289 template<
typename DstXprType,
typename XprType>
297 if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
298 dst.resize(dstRows, dstCols);
300 const int Size =
EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
303 &&
"Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
334 template<
typename Derived>
360 template<
typename Derived>
361 template<
typename ResultType>
374 RowsAtCompileTime == 2,
379 (derived(), absDeterminantThreshold,
inverse, determinant, invertible);
399 template<
typename Derived>
400 template<
typename ResultType>
410 computeInverseAndDetWithCheck(
inverse,determinant,invertible,absDeterminantThreshold);
415 #endif // EIGEN_INVERSE_IMPL_H