Go to the documentation of this file.
10 #ifndef EIGEN_CHOLMODSUPPORT_H
11 #define EIGEN_CHOLMODSUPPORT_H
20 template<
typename CholmodType>
22 mat.xtype = CHOLMOD_REAL;
23 mat.dtype = CHOLMOD_DOUBLE;
28 template<
typename CholmodType>
30 mat.xtype = CHOLMOD_COMPLEX;
31 mat.dtype = CHOLMOD_DOUBLE;
57 template<
typename _Scalar,
int _Options,
typename _StorageIndex>
61 res.nzmax =
mat.nonZeros();
62 res.nrow =
mat.rows();
63 res.ncol =
mat.cols();
64 res.p =
mat.outerIndexPtr();
65 res.i =
mat.innerIndexPtr();
66 res.x =
mat.valuePtr();
69 if(
mat.isCompressed())
77 res.nz =
mat.innerNonZeroPtr();
85 res.itype = CHOLMOD_INT;
89 res.itype = CHOLMOD_LONG;
104 template<
typename _Scalar,
int _Options,
typename _Index>
111 template<
typename _Scalar,
int _Options,
typename _Index>
120 template<
typename _Scalar,
int _Options,
typename _Index,
unsigned int UpLo>
125 if(UpLo==
Upper) res.stype = 1;
126 if(UpLo==
Lower) res.stype = -1;
133 template<
typename Derived>
140 res.nrow =
mat.rows();
141 res.ncol =
mat.cols();
142 res.nzmax = res.nrow * res.ncol;
143 res.d = Derived::IsVectorAtCompileTime ?
mat.derived().size() :
mat.derived().outerStride();
144 res.x = (
void*)(
mat.derived().data());
154 template<
typename Scalar,
int Flags,
typename StorageIndex>
158 (cm.nrow, cm.ncol,
static_cast<StorageIndex*
>(cm.p)[cm.ncol],
159 static_cast<StorageIndex*
>(cm.p),
static_cast<StorageIndex*
>(cm.i),
static_cast<Scalar*
>(cm.x) );
172 template<
typename _MatrixType,
int _UpLo,
typename Derived>
282 #ifndef EIGEN_PARSED_BY_DOXYGEN
284 template<
typename Rhs,
typename Dest>
287 eigen_assert(
m_factorizationIsOk &&
"The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
308 template<
typename RhsDerived,
typename DestDerived>
311 eigen_assert(
m_factorizationIsOk &&
"The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
326 dest.
derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs);
329 #endif // EIGEN_PARSED_BY_DOXYGEN
359 eigen_assert(
m_factorizationIsOk &&
"The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
376 for (
Index k=0; k < nb_super_nodes; ++k)
382 logDet += sk.real().log().sum();
398 template<
typename Stream>
433 template<
typename _MatrixType,
int _UpLo = Lower>
456 m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
484 template<
typename _MatrixType,
int _UpLo = Lower>
507 m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
533 template<
typename _MatrixType,
int _UpLo = Lower>
556 m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
584 template<
typename _MatrixType,
int _UpLo = Lower>
614 m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
619 m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
623 m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
639 #endif // EIGEN_CHOLMODSUPPORT_H
The base class for the direct Cholesky factorization of Cholmod.
MappedSparseMatrix< Scalar, Flags, StorageIndex > viewAsEigen(cholmod_sparse &cm)
void factorize(const MatrixType &matrix)
CholmodBase< _MatrixType, _UpLo, CholmodDecomposition > Base
A versatible sparse matrix representation.
void setMode(CholmodMode mode)
CholmodBase(const MatrixType &matrix)
void _solve_impl(const MatrixBase< Rhs > &b, MatrixBase< Dest > &dest) const
Convenience specialization of Stride to specify only an inner stride See class Map for some examples.
NumTraits< Scalar >::Real RealScalar
const unsigned int RowMajorBit
CholmodBase< _MatrixType, _UpLo, CholmodSimplicialLDLT > Base
const EIGEN_DEVICE_FUNC LogReturnType log() const
CholmodDecomposition(const MatrixType &matrix)
const EIGEN_DEVICE_FUNC ExpReturnType exp() const
A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod.
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
SparseSolverBase< Derived > Base
Scalar logDeterminant() const
cholmod_sparse viewAsCholmod(Ref< SparseMatrix< _Scalar, _Options, _StorageIndex > > mat)
void analyzePattern(const MatrixType &matrix)
cholmod_common & cholmod()
#define EIGEN_UNUSED_VARIABLE(var)
MatrixType CholMatrixType
Scalar determinant() const
ComputationInfo info() const
Reports whether previous computation was successful.
CholmodSimplicialLDLT(const MatrixType &matrix)
void dumpMemory(Stream &)
A supernodal Cholesky (LLT) factorization and solver based on Cholmod.
A matrix or vector expression mapping an existing array of data.
MatrixType::StorageIndex StorageIndex
static ConstMapType Map(const Scalar *data)
CholmodBase< _MatrixType, _UpLo, CholmodSimplicialLLT > Base
CholmodSimplicialLLT(const MatrixType &matrix)
const AutoDiffScalar< DerType > & real(const AutoDiffScalar< DerType > &x)
MatrixType::Scalar Scalar
A base class for sparse solvers.
A matrix or vector expression mapping an existing expression.
MatrixType::RealScalar RealScalar
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
StorageIndex rows() const
void run(Expr &expr, Dev &dev)
Base class of any sparse matrices or sparse expressions.
A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod.
const Derived & derived() const
static constexpr size_t size(Tuple< Args... > &)
Provides access to the number of elements in a tuple as a compile-time constant expression.
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
Base class for all dense matrices, vectors, and expressions.
MatrixType A(a, *n, *n, *lda)
void _solve_impl(const SparseMatrixBase< RhsDerived > &b, SparseMatrixBase< DestDerived > &dest) const
Derived & compute(const MatrixType &matrix)
CholmodBase< _MatrixType, _UpLo, CholmodSupernodalLLT > Base
StorageIndex cols() const
cholmod_factor * m_cholmodFactor
A general Cholesky factorization and solver based on Cholmod.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
CholmodSupernodalLLT(const MatrixType &matrix)
RealScalar RealScalar * px
Derived & setShift(const RealScalar &offset)
control_box_rst
Author(s): Christoph Rösmann
autogenerated on Wed Mar 2 2022 00:05:38