5 #include "pinocchio/codegen/cppadcg.hpp" 7 #include "pinocchio/multibody/model.hpp" 8 #include "pinocchio/multibody/data.hpp" 10 #include "pinocchio/algorithm/kinematics.hpp" 11 #include "pinocchio/algorithm/jacobian.hpp" 12 #include "pinocchio/algorithm/crba.hpp" 13 #include "pinocchio/algorithm/rnea.hpp" 14 #include "pinocchio/algorithm/aba.hpp" 15 #include "pinocchio/algorithm/joint-configuration.hpp" 17 #include "pinocchio/parsers/sample-models.hpp" 21 #include <boost/test/unit_test.hpp> 22 #include <boost/utility/binary.hpp> 24 BOOST_AUTO_TEST_SUITE(BOOST_TEST_MODULE)
29 typedef CppAD::cg::CG<Scalar> CGScalar;
30 typedef CppAD::AD<CGScalar> ADScalar;
32 typedef Eigen::Matrix<ADScalar,Eigen::Dynamic,1> ADVector;
42 model.lowerPositionLimit.head<3>().
fill(-1.);
43 model.upperPositionLimit.head<3>().
fill(1.);
46 ADModel ad_model = model.cast<ADScalar>();
47 ADData ad_data(ad_model);
50 typedef Model::ConfigVectorType ConfigVectorType;
51 typedef Model::TangentVectorType TangentVectorType;
52 ConfigVectorType
q(model.nq);
55 TangentVectorType
v(TangentVectorType::Random(model.nv));
56 TangentVectorType
a(TangentVectorType::Random(model.nv));
58 typedef ADModel::ConfigVectorType ADConfigVectorType;
59 typedef ADModel::TangentVectorType ADTangentVectorType;
61 ADConfigVectorType ad_q = q.cast<ADScalar>();
62 ADTangentVectorType ad_v = v.cast<ADScalar>();
63 ADTangentVectorType ad_a = a.cast<ADScalar>();
65 ADTangentVectorType &
X = ad_a;
66 CppAD::Independent(X);
69 ADVector
Y(model.nv); Y = ad_data.tau;
71 CppAD::ADFun<CGScalar> fun(X,Y);
74 CppAD::cg::ModelCSourceGen<Scalar> cgen(fun,
"rnea");
75 cgen.setCreateJacobian(
true);
76 cgen.setCreateForwardZero(
true);
77 cgen.setCreateForwardOne(
true);
78 cgen.setCreateReverseOne(
true);
79 cgen.setCreateReverseTwo(
true);
80 CppAD::cg::ModelLibraryCSourceGen<Scalar> libcgen(cgen);
83 CppAD::cg::DynamicModelLibraryProcessor<Scalar>
p(libcgen);
85 CppAD::cg::GccCompiler<Scalar> compiler;
86 std::unique_ptr<CppAD::cg::DynamicLib<Scalar>> dynamicLib = p.createDynamicLibrary(compiler);
89 CppAD::cg::SaveFilesModelLibraryProcessor<Scalar> p2(libcgen);
93 std::unique_ptr<CppAD::cg::GenericModel<Scalar> > rnea_generated = dynamicLib->model(
"rnea");
95 CPPAD_TESTVECTOR(Scalar)
x((
size_t)model.nv);
96 Eigen::Map<TangentVectorType>(
x.data(),model.nv,1) = a;
98 CPPAD_TESTVECTOR(Scalar)
tau = rnea_generated->ForwardZero(
x);
100 Eigen::Map<TangentVectorType> tau_map(tau.data(),model.nv,1);
102 BOOST_CHECK(tau_map.isApprox(tau_ref));
105 data.M.triangularView<Eigen::StrictlyLower>()
106 = data.M.transpose().triangularView<Eigen::StrictlyLower>();
108 CPPAD_TESTVECTOR(Scalar)
dtau_da = rnea_generated->Jacobian(
x);
109 Eigen::Map<PINOCCHIO_EIGEN_PLAIN_ROW_MAJOR_TYPE(Data::MatrixXs)> M_map(dtau_da.data(),model.nv,model.nv);
110 BOOST_CHECK(M_map.isApprox(data.M));
113 BOOST_AUTO_TEST_SUITE_END()
const DataTpl< Scalar, Options, JointCollectionTpl >::MatrixXs & crba(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, DataTpl< Scalar, Options, JointCollectionTpl > &data, const Eigen::MatrixBase< ConfigVectorType > &q)
Computes the upper triangular part of the joint space inertia matrix M by using the Composite Rigid B...
void rnea(const int num_threads, ModelPoolTpl< Scalar, Options, JointCollectionTpl > &pool, const Eigen::MatrixBase< ConfigVectorPool > &q, const Eigen::MatrixBase< TangentVectorPool1 > &v, const Eigen::MatrixBase< TangentVectorPool2 > &a, const Eigen::MatrixBase< TangentVectorPool3 > &tau)
The Recursive Newton-Euler algorithm. It computes the inverse dynamics, aka the joint torques accordi...
void randomConfiguration(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, const Eigen::MatrixBase< ConfigVectorIn1 > &lowerLimits, const Eigen::MatrixBase< ConfigVectorIn2 > &upperLimits, const Eigen::MatrixBase< ReturnType > &qout)
Generate a configuration vector uniformly sampled among provided limits.
BOOST_AUTO_TEST_CASE(test_crba_code_generation)
void humanoidRandom(ModelTpl< Scalar, Options, JointCollectionTpl > &model, bool usingFF=true)
Create a humanoid kinematic tree with 6-DOF limbs and random joint placements.