Jacobi preconditioner for LeastSquaresConjugateGradient. More...
#include <BasicPreconditioners.h>
Public Member Functions | |
template<typename MatType > | |
LeastSquareDiagonalPreconditioner & | analyzePattern (const MatType &) |
template<typename MatType > | |
LeastSquareDiagonalPreconditioner & | compute (const MatType &mat) |
template<typename MatType > | |
LeastSquareDiagonalPreconditioner & | factorize (const MatType &mat) |
ComputationInfo | info () |
LeastSquareDiagonalPreconditioner () | |
template<typename MatType > | |
LeastSquareDiagonalPreconditioner (const MatType &mat) | |
Public Member Functions inherited from Eigen::DiagonalPreconditioner< _Scalar > | |
template<typename Rhs , typename Dest > | |
void | _solve_impl (const Rhs &b, Dest &x) const |
template<typename MatType > | |
DiagonalPreconditioner & | analyzePattern (const MatType &) |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
template<typename MatType > | |
DiagonalPreconditioner & | compute (const MatType &mat) |
DiagonalPreconditioner () | |
template<typename MatType > | |
DiagonalPreconditioner (const MatType &mat) | |
template<typename MatType > | |
DiagonalPreconditioner & | factorize (const MatType &mat) |
ComputationInfo | info () |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
template<typename Rhs > | |
const Solve< DiagonalPreconditioner, Rhs > | solve (const MatrixBase< Rhs > &b) const |
Private Types | |
typedef DiagonalPreconditioner< _Scalar > | Base |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef _Scalar | Scalar |
Additional Inherited Members | |
Public Types inherited from Eigen::DiagonalPreconditioner< _Scalar > | |
enum | { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic } |
typedef Vector::StorageIndex | StorageIndex |
Protected Attributes inherited from Eigen::DiagonalPreconditioner< _Scalar > | |
Vector | m_invdiag |
bool | m_isInitialized |
Jacobi preconditioner for LeastSquaresConjugateGradient.
This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
_Scalar | the type of the scalar. |
The diagonal entries are pre-inverted and stored into a dense vector.
Definition at line 128 of file BasicPreconditioners.h.
|
private |
Definition at line 132 of file BasicPreconditioners.h.
|
private |
Definition at line 131 of file BasicPreconditioners.h.
|
private |
Definition at line 130 of file BasicPreconditioners.h.
|
inline |
Definition at line 136 of file BasicPreconditioners.h.
|
inlineexplicit |
Definition at line 139 of file BasicPreconditioners.h.
|
inline |
Definition at line 145 of file BasicPreconditioners.h.
|
inline |
Definition at line 183 of file BasicPreconditioners.h.
|
inline |
Definition at line 151 of file BasicPreconditioners.h.
|
inline |
Definition at line 188 of file BasicPreconditioners.h.