10 #ifndef EIGEN_SPLINE_H 11 #define EIGEN_SPLINE_H 34 template <
typename _Scalar,
int _Dim,
int _Degree>
80 template <
typename OtherVectorType,
typename OtherArrayType>
87 template <
int OtherDegree>
134 template <
int DerivativeOrder>
178 template <
int DerivativeOrder>
224 template <
typename DerivativeType>
233 template <
typename _Scalar,
int _Dim,
int _Degree>
241 const Scalar*
pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
245 template <
typename _Scalar,
int _Dim,
int _Degree>
271 N[r] = saved +
right(r+1)*tmp;
272 saved =
left(j-r)*tmp;
279 template <
typename _Scalar,
int _Dim,
int _Degree>
288 template <
typename _Scalar,
int _Dim,
int _Degree>
294 template <
typename _Scalar,
int _Dim,
int _Degree>
305 return (ctrl_weights * ctrl_pts).rowwise().sum();
310 template <
typename SplineType,
typename DerivativeType>
315 enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
329 const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
332 for (
DenseIndex der_order=0; der_order<n+1; ++der_order)
336 der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
340 template <
typename _Scalar,
int _Dim,
int _Degree>
349 template <
typename _Scalar,
int _Dim,
int _Degree>
350 template <
int DerivativeOrder>
359 template <
typename _Scalar,
int _Dim,
int _Degree>
369 template <
typename _Scalar,
int _Dim,
int _Degree>
370 template <
typename DerivativeType>
399 left[
j] = u-U[span+1-
j];
400 right[
j] = U[span+
j]-u;
406 ndu(j,r) = right[r+1]+left[j-r];
407 temp = ndu(r,j-1)/ndu(j,r);
409 ndu(r,j) =
static_cast<Scalar>(saved+right[r+1] * temp);
410 saved = left[j-r] * temp;
413 ndu(j,j) =
static_cast<Scalar>(saved);
416 for (j = p; j>=0; --
j)
420 DerivativeType
a(n+1,p+1);
429 for (
DenseIndex k=1; k<=static_cast<DenseIndex>(
n); ++k)
437 a(s2,0) =
a(s1,0)/ndu(pk+1,rk);
438 d =
a(s2,0)*ndu(rk,pk);
444 if (r-1 <= pk) j2 = k-1;
447 for (j=j1; j<=j2; ++
j)
449 a(s2,j) = (
a(s1,j)-
a(s1,j-1))/ndu(pk+1,rk+j);
450 d +=
a(s2,j)*ndu(rk+j,pk);
455 a(s2,k) = -
a(s1,k-1)/ndu(pk+1,r);
456 d +=
a(s2,k)*ndu(r,pk);
459 N_(k,r) =
static_cast<Scalar>(
d);
460 j = s1; s1 = s2; s2 =
j;
467 for (
DenseIndex k=1; k<=static_cast<DenseIndex>(
n); ++k)
469 for (j=p; j>=0; --
j) N_(k,j) *= r;
474 template <
typename _Scalar,
int _Dim,
int _Degree>
483 template <
typename _Scalar,
int _Dim,
int _Degree>
484 template <
int DerivativeOrder>
493 template <
typename _Scalar,
int _Dim,
int _Degree>
507 #endif // EIGEN_SPLINE_H
A class representing multi-dimensional spline curves.
void derivativesImpl(const SplineType &spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType &der)
static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType &knots)
Returns the spline's non-zero basis functions.
SplineTraits< Spline >::PointType PointType
The point type the spline is representing.
SplineTraits< Spline >::DerivativeType derivatives(Scalar u, DenseIndex order) const
Evaluation of spline derivatives of up-to given order.
SplineTraits< Spline >::BasisDerivativeType BasisDerivativeType
The data type used to store the values of the basis function derivatives.
Namespace containing all symbols from the Eigen library.
Double_ distance(const OrientedPlane3_ &p)
SplineTraits< Spline >::BasisDerivativeType basisFunctionDerivatives(Scalar u, DenseIndex order) const
Computes the non-zero spline basis function derivatives up to given order.
const ControlPointVectorType & ctrls() const
Returns the ctrls of the underlying spline.
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
static BasisDerivativeType BasisFunctionDerivatives(const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType &knots)
Computes the non-zero spline basis function derivatives up to given order.
Expression of a fixed-size or dynamic-size sub-vector.
ControlPointVectorType m_ctrls
PointType operator()(Scalar u) const
Returns the spline value at a given site .
DenseIndex span(Scalar u) const
Returns the span within the knot vector in which u is falling.
DenseIndex degree() const
Returns the spline degree.
Spline()
Creates a (constant) zero spline. For Splines with dynamic degree, the resulting degree will be 0...
Expression of the multiple replication of a matrix or vector.
SplineTraits< Spline >::ParameterVectorType ParameterVectorType
The data type used to store parameter vectors.
const Block< const Derived, 1, internal::traits< Derived >::ColsAtCompileTime, IsRowMajor > ConstRowXpr
static DenseIndex Span(typename SplineTraits< Spline >::Scalar u, DenseIndex degree, const typename SplineTraits< Spline >::KnotVectorType &knots)
Computes the span within the provided knot vector in which u is falling.
const KnotVectorType & knots() const
Returns the knots of the underlying spline.
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
SplineTraits< Spline >::ControlPointVectorType ControlPointVectorType
The data type representing the spline's control points.
Spline(const Spline< Scalar, Dimension, OtherDegree > &spline)
Copy constructor for splines.
Expression of a fixed-size or dynamic-size block.
SplineTraits< Spline >::BasisVectorType basisFunctions(Scalar u) const
Computes the non-zero basis functions at the given site.
Spline(const OtherVectorType &knots, const OtherArrayType &ctrls)
Creates a spline from a knot vector and control points.
General-purpose arrays with easy API for coefficient-wise operations.
SplineTraits< Spline >::BasisVectorType BasisVectorType
The data type used to store non-zero basis functions.
SplineTraits< Spline >::KnotVectorType KnotVectorType
The data type used to store knot vectors.
The matrix class, also used for vectors and row-vectors.
static void BasisFunctionDerivativesImpl(const typename Spline< _Scalar, _Dim, _Degree >::Scalar u, const DenseIndex order, const DenseIndex p, const typename Spline< _Scalar, _Dim, _Degree >::KnotVectorType &U, DerivativeType &N_)