10 #ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H 11 #define EIGEN_SELFADJOINT_MATRIX_VECTOR_H 23 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version=Specialized>
26 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
39 template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
53 IsRowMajor = StorageOrder==
RowMajor ? 1 : 0,
54 IsLower = UpLo ==
Lower ? 1 : 0,
55 FirstTriangular = IsRowMajor == IsLower
71 for (
Index j=FirstTriangular ? bound : 0;
78 Packet ptmp0 = pset1<Packet>(t0);
79 Scalar t1 = cjAlpha * rhs[j+1];
80 Packet ptmp1 = pset1<Packet>(t1);
83 Packet ptmp2 = pset1<Packet>(t2);
85 Packet ptmp3 = pset1<Packet>(t3);
87 Index starti = FirstTriangular ? 0 : j+2;
90 Index alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
96 res[
j] += cj0.
pmul(A1[j], t1);
97 t3 += cj1.
pmul(A1[j], rhs[j]);
101 res[j+1] += cj0.
pmul(A0[j+1],t0);
102 t2 += cj1.
pmul(A0[j+1], rhs[j+1]);
105 for (
Index i=starti;
i<alignedStart; ++
i)
107 res[
i] += cj0.
pmul(A0[
i], t0) + cj0.
pmul(A1[i],t1);
108 t2 += cj1.
pmul(A0[i], rhs[i]);
109 t3 += cj1.
pmul(A1[i], rhs[i]);
117 for (
Index i=alignedStart;
i<alignedEnd;
i+=PacketSize)
119 Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
120 Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
121 Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize;
122 Packet Xi = pload <Packet>(resIt);
124 Xi = pcj0.
pmadd(A0i,ptmp0, pcj0.
pmadd(A1i,ptmp1,Xi));
125 ptmp2 = pcj1.
pmadd(A0i, Bi, ptmp2);
126 ptmp3 = pcj1.
pmadd(A1i, Bi, ptmp3);
127 pstore(resIt,Xi); resIt += PacketSize;
129 for (
Index i=alignedEnd;
i<endi;
i++)
131 res[
i] += cj0.
pmul(A0[
i], t0) + cj0.
pmul(A1[i],t1);
132 t2 += cj1.
pmul(A0[i], rhs[i]);
133 t3 += cj1.
pmul(A1[i], rhs[i]);
136 res[
j] += alpha * (t2 +
predux(ptmp2));
137 res[j+1] += alpha * (t3 +
predux(ptmp3));
139 for (
Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ?
bound :
size);j++)
146 for (
Index i=FirstTriangular ? 0 : j+1;
i<(FirstTriangular ?
j :
size);
i++)
148 res[
i] += cj0.
pmul(A0[
i], t1);
149 t2 += cj1.
pmul(A0[i], rhs[i]);
151 res[
j] += alpha * t2;
163 template<
typename Lhs,
int LhsMode,
typename Rhs>
178 template<
typename Dest>
186 eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols());
191 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
192 * RhsBlasTraits::extractScalarFactor(a_rhs);
195 EvalToDest = (Dest::InnerStrideAtCompileTime==1),
196 UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
203 EvalToDest ? dest.data() : static_dest.data());
206 UseRhs ?
const_cast<RhsScalar*
>(rhs.data()) : static_rhs.data());
210 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN 212 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
214 MappedDest(actualDestPtr, dest.size()) = dest;
219 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN 221 EIGEN_DENSE_STORAGE_CTOR_PLUGIN
228 int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>
::run 231 &lhs.coeffRef(0,0), lhs.outerStride(),
238 dest = MappedDest(actualDestPtr, dest.size());
242 template<
typename Lhs,
typename Rhs,
int RhsMode>
248 template<
typename Dest>
249 static void run(Dest& dest,
const Lhs &a_lhs,
const Rhs &a_rhs,
const Scalar&
alpha)
262 #endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H internal::packet_traits< Scalar >::type Packet
internal::remove_all< ActualLhsType >::type ActualLhsTypeCleaned
Expression of the product of two arbitrary matrices or vectors.
static EIGEN_DONT_INLINE EIGEN_DEVICE_FUNC void run(Index size, const Scalar *lhs, Index lhsStride, const Scalar *rhs, Scalar *res, Scalar alpha)
A matrix or vector expression mapping an existing array of data.
Expression of the transpose of a matrix.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType pmadd(const LhsType &x, const RhsType &y, const ResultType &c) const
RhsBlasTraits::DirectLinearAccessType ActualRhsType
Namespace containing all symbols from the Eigen library.
Product< Lhs, Rhs >::Scalar Scalar
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
EIGEN_DEVICE_FUNC unpacket_traits< Packet >::type predux(const Packet &a)
#define EIGEN_LOGICAL_XOR(a, b)
const unsigned int RowMajorBit
AnnoyingScalar conj(const AnnoyingScalar &x)
#define EIGEN_DONT_INLINE
static Index first_default_aligned(const DenseBase< Derived > &m)
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
internal::blas_traits< Rhs > RhsBlasTraits
static void run(Dest &dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar &alpha)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
LhsBlasTraits::DirectLinearAccessType ActualLhsType
Product< Lhs, Rhs >::Scalar Scalar
NumTraits< Scalar >::Real RealScalar
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
EIGEN_DEVICE_FUNC void pstore(Scalar *to, const Packet &from)
EIGEN_CONSTEXPR Index size(const T &x)
#define EIGEN_DEVICE_FUNC
#define EIGEN_PLAIN_ENUM_MIN(a, b)
internal::remove_all< ActualRhsType >::type ActualRhsTypeCleaned
static EIGEN_DEVICE_FUNC void run(Dest &dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar &alpha)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType pmul(const LhsType &x, const RhsType &y) const
Generic expression where a coefficient-wise unary operator is applied to an expression.
internal::blas_traits< Lhs > LhsBlasTraits