3rdparty/Eigen/Eigen/src/OrderingMethods/Ordering.h
Go to the documentation of this file.
1 
2 // This file is part of Eigen, a lightweight C++ template library
3 // for linear algebra.
4 //
5 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_ORDERING_H
12 #define EIGEN_ORDERING_H
13 
14 namespace Eigen {
15 
16 #include "Eigen_Colamd.h"
17 
18 namespace internal {
19 
26 template<typename MatrixType>
28 {
29  MatrixType C;
30  C = A.transpose(); // NOTE: Could be costly
31  for (int i = 0; i < C.rows(); i++)
32  {
33  for (typename MatrixType::InnerIterator it(C, i); it; ++it)
34  it.valueRef() = typename MatrixType::Scalar(0);
35  }
36  symmat = C + A;
37 }
38 
39 }
40 
49 template <typename StorageIndex>
51 {
52  public:
54 
58  template <typename MatrixType>
59  void operator()(const MatrixType& mat, PermutationType& perm)
60  {
61  // Compute the symmetric pattern
64 
65  // Call the AMD routine
66  //m_mat.prune(keep_diag());
68  }
69 
71  template <typename SrcType, unsigned int SrcUpLo>
73  {
75 
76  // Call the AMD routine
77  // m_mat.prune(keep_diag()); //Remove the diagonal elements
79  }
80 };
81 
90 template <typename StorageIndex>
92 {
93  public:
95 
97  template <typename MatrixType>
98  void operator()(const MatrixType& /*mat*/, PermutationType& perm)
99  {
100  perm.resize(0);
101  }
102 
103 };
113 template<typename StorageIndex>
115 {
116  public:
119 
123  template <typename MatrixType>
124  void operator() (const MatrixType& mat, PermutationType& perm)
125  {
126  eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
127 
128  StorageIndex m = StorageIndex(mat.rows());
129  StorageIndex n = StorageIndex(mat.cols());
130  StorageIndex nnz = StorageIndex(mat.nonZeros());
131  // Get the recommended value of Alen to be used by colamd
132  StorageIndex Alen = internal::Colamd::recommended(nnz, m, n);
133  // Set the default parameters
134  double knobs [internal::Colamd::NKnobs];
135  StorageIndex stats [internal::Colamd::NStats];
137 
138  IndexVector p(n+1), A(Alen);
139  for(StorageIndex i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
140  for(StorageIndex i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
141  // Call Colamd routine to compute the ordering
142  StorageIndex info = internal::Colamd::compute_ordering(m, n, Alen, A.data(), p.data(), knobs, stats);
143  EIGEN_UNUSED_VARIABLE(info);
144  eigen_assert( info && "COLAMD failed " );
145 
146  perm.resize(n);
147  for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i;
148  }
149 };
150 
151 } // end namespace Eigen
153 #endif
Matrix3f m
SCALAR Scalar
Definition: bench_gemm.cpp:46
A versatible sparse matrix representation.
Definition: SparseMatrix.h:96
int n
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
MatrixXf MatrixType
bool stats
else if n * info
void ordering_helper_at_plus_a(const MatrixType &A, MatrixType &symmat)
PermutationMatrix< Dynamic, Dynamic, StorageIndex > PermutationType
void operator()(const MatrixType &mat, PermutationType &perm)
const IndicesType & indices() const
IndexType recommended(IndexType nnz, IndexType n_row, IndexType n_col)
Returns the recommended value of Alen.
#define eigen_assert(x)
Definition: Macros.h:1037
static bool compute_ordering(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[NKnobs], IndexType stats[NStats])
Computes a column ordering using the column approximate minimum degree ordering.
idx_t idx_t idx_t idx_t idx_t * perm
void minimum_degree_ordering(SparseMatrix< Scalar, ColMajor, StorageIndex > &C, PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm)
Definition: Amd.h:84
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:50
float * p
void resize(Index newSize)
internal::enable_if< internal::valid_indexed_view_overload< RowIndices, ColIndices >::value &&internal::traits< typename EIGEN_INDEXED_VIEW_METHOD_TYPE< RowIndices, ColIndices >::type >::ReturnAsIndexedView, typename EIGEN_INDEXED_VIEW_METHOD_TYPE< RowIndices, ColIndices >::type >::type operator()(const RowIndices &rowIndices, const ColIndices &colIndices) EIGEN_INDEXED_VIEW_METHOD_CONST
int EIGEN_BLAS_FUNC() symm(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc)
Definition: level3_impl.h:287
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:1076
static void set_defaults(double knobs[NKnobs])
set default parameters The use of this routine is optional.


gtsam
Author(s):
autogenerated on Tue Jul 4 2023 02:34:59