12 #ifndef EIGEN_SPARSE_LU_H 13 #define EIGEN_SPARSE_LU_H 17 template <
typename _MatrixType,
typename _OrderingType = COLAMDOrdering<
typename _MatrixType::Index> >
class SparseLU;
72 template <
typename _MatrixType,
typename _OrderingType>
78 typedef typename MatrixType::Scalar
Scalar;
80 typedef typename MatrixType::Index
Index;
89 SparseLU():
m_isInitialized(true),
m_lastError(
""),
m_Ustore(0,0,0,0,0,0),
m_symmetricmode(false),
m_diagpivotthresh(1.0),
m_detPermR(1)
93 SparseLU(
const MatrixType& matrix):
m_isInitialized(true),
m_lastError(
""),
m_Ustore(0,0,0,0,0,0),
m_symmetricmode(false),
m_diagpivotthresh(1.0),
m_detPermR(1)
105 void factorize (
const MatrixType& matrix);
177 template<
typename Rhs>
182 &&
"SparseLU::solve(): invalid number of rows of the right hand side matrix B");
190 template<
typename Rhs>
195 &&
"SparseLU::solve(): invalid number of rows of the right hand side matrix B");
221 template<
typename Rhs,
typename Dest>
224 Dest& X(_X.derived());
227 THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
231 X.resize(B.rows(),B.cols());
232 for(Index j = 0; j < B.cols(); ++j)
236 this->
matrixL().solveInPlace(X);
237 this->
matrixU().solveInPlace(X);
240 for (Index j = 0; j < B.cols(); ++j)
263 for (Index j = 0; j < this->
cols(); ++j)
265 for (
typename SCMatrix::InnerIterator it(
m_Lstore, j); it; ++it)
267 if(it.row() < j)
continue;
290 for (Index j = 0; j < this->
cols(); ++j)
292 for (
typename SCMatrix::InnerIterator it(
m_Lstore, j); it; ++it)
294 if(it.row() < j)
continue;
368 template <
typename MatrixType,
typename OrderingType>
383 const Index * outerIndexPtr;
384 if (mat.isCompressed()) outerIndexPtr = mat.outerIndexPtr();
387 Index *outerIndexPtr_t =
new Index[mat.cols()+1];
389 outerIndexPtr = outerIndexPtr_t;
391 for (
Index i = 0; i < mat.cols(); i++)
396 if(!mat.isCompressed())
delete[] outerIndexPtr;
412 for (
Index i = 0; i < m; ++i) iwork(post(i)) = post(
m_etree(i));
417 for (
Index i = 0; i < m; i++)
418 post_perm.
indices()(i) = post(i);
451 template <
typename MatrixType,
typename OrderingType>
456 eigen_assert((matrix.rows() == matrix.cols()) &&
"Only for squared matrices");
468 const Index * outerIndexPtr;
469 if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
472 Index* outerIndexPtr_t =
new Index[matrix.cols()+1];
473 for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] =
m_mat.
outerIndexPtr()[i];
474 outerIndexPtr = outerIndexPtr_t;
476 for (Index i = 0; i < matrix.cols(); i++)
481 if(!matrix.isCompressed())
delete[] outerIndexPtr;
492 Index maxpanel =
m_perfv.panel_size * m;
498 m_lastError =
"UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
550 for (jcol = 0; jcol < n; )
553 Index panel_size =
m_perfv.panel_size;
554 for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
558 panel_size = k - jcol;
563 panel_size = n - jcol;
566 Base::panel_dfs(m, panel_size, jcol,
m_mat,
m_perm_r.
indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore,
m_glu);
572 for ( jj = jcol; jj< jcol + panel_size; jj++)
580 info =
Base::column_dfs(m, jj,
m_perm_r.
indices(),
m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore,
m_glu);
583 m_lastError =
"UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
594 m_lastError =
"UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
604 m_lastError =
"UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
614 m_lastError =
"THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
615 std::ostringstream returnInfo;
630 for (i = 0; i < nseg; i++)
653 template<
typename MappedSupernodalType>
656 typedef typename MappedSupernodalType::Index
Index;
657 typedef typename MappedSupernodalType::Scalar
Scalar;
660 Index
rows() {
return m_mapL.rows(); }
661 Index
cols() {
return m_mapL.cols(); }
662 template<
typename Dest>
665 m_mapL.solveInPlace(X);
670 template<
typename MatrixLType,
typename MatrixUType>
673 typedef typename MatrixLType::Index
Index;
674 typedef typename MatrixLType::Scalar
Scalar;
676 : m_mapL(mapL),m_mapU(mapU)
678 Index
rows() {
return m_mapL.rows(); }
679 Index
cols() {
return m_mapL.cols(); }
683 Index nrhs = X.cols();
686 for (Index k = m_mapL.nsuper(); k >= 0; k--)
688 Index fsupc = m_mapL.supToCol()[k];
689 Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc];
690 Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
691 Index luptr = m_mapL.colIndexPtr()[fsupc];
695 for (Index j = 0; j < nrhs; j++)
697 X(fsupc, j) /= m_mapL.valuePtr()[luptr];
704 U = A.template triangularView<Upper>().
solve(U);
707 for (Index j = 0; j < nrhs; ++j)
709 for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
711 typename MatrixUType::InnerIterator it(m_mapU, jcol);
714 Index irow = it.index();
715 X(irow, j) -= X(jcol, j) * it.
value();
727 template<
typename _MatrixType,
typename Derived,
typename Rhs>
734 template<typename Dest>
void evalTo(Dest& dst)
const 736 dec()._solve(rhs(),dst);
740 template<
typename _MatrixType,
typename Derived,
typename Rhs>
747 template<typename Dest>
void evalTo(Dest& dst)
const 749 this->defaultEvalTo(dst);
internal::traits< Derived >::Scalar Scalar
SparseLUMatrixUReturnType(const MatrixLType &mapL, const MatrixUType &mapU)
MatrixLType::Scalar Scalar
Index column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector &tempv, BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t &glu)
Performs numeric block updates (sup-col) in topological order.
const MatrixLType & m_mapL
MappedSupernodalType::Index Index
const PermutationType & rowsPermutation() const
A matrix or vector expression mapping an existing array of data.
Matrix< Scalar, Dynamic, 1 > ScalarVector
Index copy_to_ucol(const Index jcol, const Index nseg, IndexVector &segrep, BlockIndexVector repfnz, IndexVector &perm_r, BlockScalarVector dense, GlobalLU_t &glu)
Performs numeric block updates (sup-col) in topological order.
const internal::solve_retval< SparseLU, Rhs > solve(const MatrixBase< Rhs > &B) const
const MappedSupernodalType & m_mapL
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
void fixupL(const Index n, const IndexVector &perm_r, GlobalLU_t &glu)
Fix up the data storage lsub for L-subscripts.
std::string lastErrorMessage() const
const internal::sparse_solve_retval< SparseLU, Rhs > solve(const SparseMatrixBase< Rhs > &B) const
void factorize(const MatrixType &matrix)
const unsigned int RowMajorBit
ComputationInfo info() const
Reports whether previous computation was successful.
const Index * outerIndexPtr() const
Sparse supernodal LU factorization for general matrices.
MappedSparseMatrix< Scalar, ColMajor, Index > m_Ustore
void simplicialfactorize(const MatrixType &matrix)
Index column_dfs(const Index m, const Index jcol, IndexVector &perm_r, Index maxsuper, Index &nseg, BlockIndexVector lsub_col, IndexVector &segrep, BlockIndexVector repfnz, IndexVector &xprune, IndexVector &marker, IndexVector &parent, IndexVector &xplore, GlobalLU_t &glu)
Performs a symbolic factorization on column jcol and decide the supernode boundary.
SparseLU(const MatrixType &matrix)
int coletree(const MatrixType &mat, IndexVector &parent, IndexVector &firstRowElt, typename MatrixType::Index *perm=0)
void setPivotThreshold(const RealScalar &thresh)
void panel_bmod(const Index m, const Index w, const Index jcol, const Index nseg, ScalarVector &dense, ScalarVector &tempv, IndexVector &segrep, IndexVector &repfnz, GlobalLU_t &glu)
Performs numeric block updates (sup-panel) in topological order.
void pruneL(const Index jcol, const IndexVector &perm_r, const Index pivrow, const Index nseg, const IndexVector &segrep, BlockIndexVector repfnz, IndexVector &xprune, GlobalLU_t &glu)
Prunes the L-structure.
EIGEN_STRONG_INLINE const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > abs() const
Expression of a fixed-size or dynamic-size sub-vector.
void solveInPlace(MatrixBase< Dest > &X) const
Base class of any sparse matrices or sparse expressions.
RealScalar m_diagpivotthresh
Matrix< Index, Dynamic, 1 > IndexVector
void compute(const MatrixType &matrix)
internal::SparseLUImpl< Scalar, Index > Base
SparseLU< _MatrixType, Derived > Dec
const PermutationType & colsPermutation() const
Index LUnumTempV(Index &m, Index &w, Index &t, Index &b)
void isSymmetric(bool sym)
MatrixType::Scalar Scalar
CoeffReturnType value() const
EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols)
const CwiseUnaryOp< internal::scalar_log_op< Scalar >, const Derived > log() const
bool _solve(const MatrixBase< Rhs > &B, MatrixBase< Dest > &_X) const
void setInfos(Index m, Index n, ScalarVector &nzval, IndexVector &nzval_colptr, IndexVector &rowind, IndexVector &rowind_colptr, IndexVector &col_to_sup, IndexVector &sup_to_col)
Derived & setZero(Index size)
#define EIGEN_MAKE_SPARSE_SOLVE_HELPERS(DecompositionType, Rhs)
Transpose< PermutationBase > inverse() const
Derived & setConstant(Index size, const Scalar &value)
void relax_snode(const Index n, IndexVector &et, const Index relax_columns, IndexVector &descendants, IndexVector &relax_end)
Identify the initial relaxed supernodes.
EIGEN_STRONG_INLINE const Scalar * data() const
SparseLUMatrixUReturnType< SCMatrix, MappedSparseMatrix< Scalar, ColMajor, Index > > matrixU() const
_OrderingType OrderingType
const Derived & derived() const
internal::MappedSuperNodalMatrix< Scalar, Index > SCMatrix
const IndicesType & indices() const
void panel_dfs(const Index m, const Index w, const Index jcol, MatrixType &A, IndexVector &perm_r, Index &nseg, ScalarVector &dense, IndexVector &panel_lsub, IndexVector &segrep, IndexVector &repfnz, IndexVector &xprune, IndexVector &marker, IndexVector &parent, IndexVector &xplore, GlobalLU_t &glu)
Performs a symbolic factorization on a panel of columns [jcol, jcol+w)
PermutationMatrix< Dynamic, Dynamic, Index > PermutationType
Scalar logAbsDeterminant() const
Index pivotL(const Index jcol, const RealScalar &diagpivotthresh, IndexVector &perm_r, IndexVector &iperm_c, Index &pivrow, GlobalLU_t &glu)
Performs the numerical pivotin on the current column of L, and the CDIV operation.
SparseLUMatrixLReturnType(const MappedSupernodalType &mapL)
#define EIGEN_MAKE_SOLVE_HELPERS(DecompositionType, Rhs)
internal::perfvalues< Index > m_perfv
void analyzePattern(const MatrixType &matrix)
const MatrixUType & m_mapU
void countnz(const Index n, Index &nnzL, Index &nnzU, GlobalLU_t &glu)
Count Nonzero elements in the factors.
SparseLU< _MatrixType, Derived > Dec
MatrixType::RealScalar RealScalar
Convenience specialization of Stride to specify only an outer stride See class Map for some examples...
void solveInPlace(MatrixBase< Dest > &X) const
void resize(Index newSize)
Base class for all dense matrices, vectors, and expressions.
SparseLUMatrixLReturnType< SCMatrix > matrixL() const
SparseMatrix< Scalar, ColMajor, Index > NCMatrix
Index memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t &glu)
Allocate various working space for the numerical factorization phase.
const Index * innerNonZeroPtr() const
MappedSupernodalType::Scalar Scalar
void treePostorder(Index n, IndexVector &parent, IndexVector &post)
Post order a tree.
void heap_relax_snode(const Index n, IndexVector &et, const Index relax_columns, IndexVector &descendants, IndexVector &relax_end)
Identify the initial relaxed supernodes.