SparseDiagonalProduct.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SPARSE_DIAGONAL_PRODUCT_H
11 #define EIGEN_SPARSE_DIAGONAL_PRODUCT_H
12 
13 namespace Eigen {
14 
15 // The product of a diagonal matrix with a sparse matrix can be easily
16 // implemented using expression template.
17 // We have two consider very different cases:
18 // 1 - diag * row-major sparse
19 // => each inner vector <=> scalar * sparse vector product
20 // => so we can reuse CwiseUnaryOp::InnerIterator
21 // 2 - diag * col-major sparse
22 // => each inner vector <=> densevector * sparse vector cwise product
23 // => again, we can reuse specialization of CwiseBinaryOp::InnerIterator
24 // for that particular case
25 // The two other cases are symmetric.
26 
27 namespace internal {
28 
29 template<typename Lhs, typename Rhs>
30 struct traits<SparseDiagonalProduct<Lhs, Rhs> >
31 {
32  typedef typename remove_all<Lhs>::type _Lhs;
33  typedef typename remove_all<Rhs>::type _Rhs;
34  typedef typename _Lhs::Scalar Scalar;
36  typename traits<Rhs>::Index>::type Index;
37  typedef Sparse StorageKind;
38  typedef MatrixXpr XprKind;
39  enum {
40  RowsAtCompileTime = _Lhs::RowsAtCompileTime,
41  ColsAtCompileTime = _Rhs::ColsAtCompileTime,
42 
43  MaxRowsAtCompileTime = _Lhs::MaxRowsAtCompileTime,
44  MaxColsAtCompileTime = _Rhs::MaxColsAtCompileTime,
45 
46  SparseFlags = is_diagonal<_Lhs>::ret ? int(_Rhs::Flags) : int(_Lhs::Flags),
47  Flags = (SparseFlags&RowMajorBit),
48  CoeffReadCost = Dynamic
49  };
50 };
51 
53 template<typename Lhs, typename Rhs, typename SparseDiagonalProductType, int RhsMode, int LhsMode>
55 
56 } // end namespace internal
57 
58 template<typename Lhs, typename Rhs>
60  : public SparseMatrixBase<SparseDiagonalProduct<Lhs,Rhs> >,
62 {
63  typedef typename Lhs::Nested LhsNested;
64  typedef typename Rhs::Nested RhsNested;
65 
68 
69  enum {
73  : (_RhsNested::Flags&RowMajorBit) ? internal::SDP_IsSparseRowMajor : internal::SDP_IsSparseColMajor
74  };
75 
76  public:
77 
79 
80  typedef internal::sparse_diagonal_product_inner_iterator_selector
81  <_LhsNested,_RhsNested,SparseDiagonalProduct,LhsMode,RhsMode> InnerIterator;
82 
83  // We do not want ReverseInnerIterator for diagonal-sparse products,
84  // but this dummy declaration is needed to make diag * sparse * diag compile.
85  class ReverseInnerIterator;
86 
87  EIGEN_STRONG_INLINE SparseDiagonalProduct(const Lhs& lhs, const Rhs& rhs)
88  : m_lhs(lhs), m_rhs(rhs)
89  {
90  eigen_assert(lhs.cols() == rhs.rows() && "invalid sparse matrix * diagonal matrix product");
91  }
92 
93  EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
94  EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
95 
96  EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
97  EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
98 
99  protected:
100  LhsNested m_lhs;
101  RhsNested m_rhs;
102 };
103 
104 namespace internal {
105 
106 template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
108 <Lhs,Rhs,SparseDiagonalProductType,SDP_IsDiagonal,SDP_IsSparseRowMajor>
109  : public CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator
110 {
112  typedef typename Lhs::Index Index;
113  public:
115  const SparseDiagonalProductType& expr, Index outer)
116  : Base(expr.rhs()*(expr.lhs().diagonal().coeff(outer)), outer)
117  {}
118 };
119 
120 template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
122 <Lhs,Rhs,SparseDiagonalProductType,SDP_IsDiagonal,SDP_IsSparseColMajor>
123  : public CwiseBinaryOp<
124  scalar_product_op<typename Lhs::Scalar>,
125  const typename Rhs::ConstInnerVectorReturnType,
126  const typename Lhs::DiagonalVectorType>::InnerIterator
127 {
128  typedef typename CwiseBinaryOp<
130  const typename Rhs::ConstInnerVectorReturnType,
131  const typename Lhs::DiagonalVectorType>::InnerIterator Base;
132  typedef typename Lhs::Index Index;
133  Index m_outer;
134  public:
136  const SparseDiagonalProductType& expr, Index outer)
137  : Base(expr.rhs().innerVector(outer) .cwiseProduct(expr.lhs().diagonal()), 0), m_outer(outer)
138  {}
139 
140  inline Index outer() const { return m_outer; }
141  inline Index col() const { return m_outer; }
142 };
143 
144 template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
146 <Lhs,Rhs,SparseDiagonalProductType,SDP_IsSparseColMajor,SDP_IsDiagonal>
147  : public CwiseUnaryOp<scalar_multiple_op<typename Rhs::Scalar>,const Lhs>::InnerIterator
148 {
150  typedef typename Lhs::Index Index;
151  public:
153  const SparseDiagonalProductType& expr, Index outer)
154  : Base(expr.lhs()*expr.rhs().diagonal().coeff(outer), outer)
155  {}
156 };
157 
158 template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
160 <Lhs,Rhs,SparseDiagonalProductType,SDP_IsSparseRowMajor,SDP_IsDiagonal>
161  : public CwiseBinaryOp<
162  scalar_product_op<typename Rhs::Scalar>,
163  const typename Lhs::ConstInnerVectorReturnType,
164  const Transpose<const typename Rhs::DiagonalVectorType> >::InnerIterator
165 {
166  typedef typename CwiseBinaryOp<
168  const typename Lhs::ConstInnerVectorReturnType,
170  typedef typename Lhs::Index Index;
171  Index m_outer;
172  public:
174  const SparseDiagonalProductType& expr, Index outer)
175  : Base(expr.lhs().innerVector(outer) .cwiseProduct(expr.rhs().diagonal().transpose()), 0), m_outer(outer)
176  {}
177 
178  inline Index outer() const { return m_outer; }
179  inline Index row() const { return m_outer; }
180 };
181 
182 } // end namespace internal
183 
184 // SparseMatrixBase functions
185 
186 template<typename Derived>
187 template<typename OtherDerived>
190 {
191  return SparseDiagonalProduct<Derived,OtherDerived>(this->derived(), other.derived());
192 }
193 
194 } // end namespace Eigen
195 
196 #endif // EIGEN_SPARSE_DIAGONAL_PRODUCT_H
EIGEN_STRONG_INLINE Index cols() const
#define EIGEN_STRONG_INLINE
EIGEN_STRONG_INLINE Index rows() const
Expression of the transpose of a matrix.
Definition: Transpose.h:57
Definition: LDLT.h:16
const unsigned int RowMajorBit
Definition: Constants.h:53
CwiseBinaryOp< scalar_product_op< typename Rhs::Scalar >, const typename Lhs::ConstInnerVectorReturnType, const Transpose< const typename Rhs::DiagonalVectorType > >::InnerIterator Base
Generic expression where a coefficient-wise binary operator is applied to two expressions.
#define EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
Definition: SparseUtil.h:62
Base class of any sparse matrices or sparse expressions.
const ScalarMultipleReturnType operator*(const Scalar &scalar) const
EIGEN_STRONG_INLINE const _RhsNested & rhs() const
promote_index_type< typename traits< Lhs >::Index, typename traits< Rhs >::Index >::type Index
CwiseBinaryOp< scalar_product_op< typename Lhs::Scalar >, const typename Rhs::ConstInnerVectorReturnType, const typename Lhs::DiagonalVectorType >::InnerIterator Base
An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression...
EIGEN_STRONG_INLINE const _LhsNested & lhs() const
internal::remove_all< RhsNested >::type _RhsNested
const Derived & derived() const
const int Dynamic
Definition: Constants.h:21
Generic expression where a coefficient-wise unary operator is applied to an expression.
Definition: CwiseUnaryOp.h:59
internal::remove_all< LhsNested >::type _LhsNested
#define eigen_assert(x)


tuw_aruco
Author(s): Lukas Pfeifhofer
autogenerated on Mon Jun 10 2019 15:40:58