sparse_solver.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "sparse.h"
11 #include <Eigen/SparseCore>
12 #include <sstream>
13 
14 template<typename Solver, typename Rhs, typename Guess,typename Result>
15 void solve_with_guess(IterativeSolverBase<Solver>& solver, const MatrixBase<Rhs>& b, const Guess& g, Result &x) {
16  if(internal::random<bool>())
17  {
18  // With a temporary through evaluator<SolveWithGuess>
19  x = solver.derived().solveWithGuess(b,g) + Result::Zero(x.rows(), x.cols());
20  }
21  else
22  {
23  // direct evaluation within x through Assignment<Result,SolveWithGuess>
24  x = solver.derived().solveWithGuess(b.derived(),g);
25  }
26 }
27 
28 template<typename Solver, typename Rhs, typename Guess,typename Result>
29 void solve_with_guess(SparseSolverBase<Solver>& solver, const MatrixBase<Rhs>& b, const Guess& , Result& x) {
30  if(internal::random<bool>())
31  x = solver.derived().solve(b) + Result::Zero(x.rows(), x.cols());
32  else
33  x = solver.derived().solve(b);
34 }
35 
36 template<typename Solver, typename Rhs, typename Guess,typename Result>
37 void solve_with_guess(SparseSolverBase<Solver>& solver, const SparseMatrixBase<Rhs>& b, const Guess& , Result& x) {
38  x = solver.derived().solve(b);
39 }
40 
41 template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
42 void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
43 {
44  typedef typename Solver::MatrixType Mat;
45  typedef typename Mat::Scalar Scalar;
46  typedef typename Mat::StorageIndex StorageIndex;
47 
48  DenseRhs refX = dA.householderQr().solve(db);
49  {
50  Rhs x(A.cols(), b.cols());
51  Rhs oldb = b;
52 
53  solver.compute(A);
54  if (solver.info() != Success)
55  {
56  std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
57  VERIFY(solver.info() == Success);
58  }
59  x = solver.solve(b);
60  if (solver.info() != Success)
61  {
62  std::cerr << "WARNING | sparse solver testing: solving failed (" << typeid(Solver).name() << ")\n";
63  return;
64  }
65  VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
66  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
67 
68  x.setZero();
69  solve_with_guess(solver, b, x, x);
70  VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API");
71  VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
72  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
73 
74  x.setZero();
75  // test the analyze/factorize API
76  solver.analyzePattern(A);
77  solver.factorize(A);
78  VERIFY(solver.info() == Success && "factorization failed when using analyzePattern/factorize API");
79  x = solver.solve(b);
80  VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API");
81  VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
82  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
83 
84  x.setZero();
85  // test with Map
86  MappedSparseMatrix<Scalar,Mat::Options,StorageIndex> Am(A.rows(), A.cols(), A.nonZeros(), const_cast<StorageIndex*>(A.outerIndexPtr()), const_cast<StorageIndex*>(A.innerIndexPtr()), const_cast<Scalar*>(A.valuePtr()));
87  solver.compute(Am);
88  VERIFY(solver.info() == Success && "factorization failed when using Map");
89  DenseRhs dx(refX);
90  dx.setZero();
91  Map<DenseRhs> xm(dx.data(), dx.rows(), dx.cols());
92  Map<const DenseRhs> bm(db.data(), db.rows(), db.cols());
93  xm = solver.solve(bm);
94  VERIFY(solver.info() == Success && "solving failed when using Map");
95  VERIFY(oldb.isApprox(bm) && "sparse solver testing: the rhs should not be modified!");
96  VERIFY(xm.isApprox(refX,test_precision<Scalar>()));
97  }
98 
99  // if not too large, do some extra check:
100  if(A.rows()<2000)
101  {
102  // test initialization ctor
103  {
104  Rhs x(b.rows(), b.cols());
105  Solver solver2(A);
106  VERIFY(solver2.info() == Success);
107  x = solver2.solve(b);
108  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
109  }
110 
111  // test dense Block as the result and rhs:
112  {
113  DenseRhs x(refX.rows(), refX.cols());
114  DenseRhs oldb(db);
115  x.setZero();
116  x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
117  VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
118  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
119  }
120 
121  // test uncompressed inputs
122  {
123  Mat A2 = A;
124  A2.reserve((ArrayXf::Random(A.outerSize())+2).template cast<typename Mat::StorageIndex>().eval());
125  solver.compute(A2);
126  Rhs x = solver.solve(b);
127  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
128  }
129 
130  // test expression as input
131  {
132  solver.compute(0.5*(A+A));
133  Rhs x = solver.solve(b);
134  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
135 
136  Solver solver2(0.5*(A+A));
137  Rhs x2 = solver2.solve(b);
138  VERIFY(x2.isApprox(refX,test_precision<Scalar>()));
139  }
140  }
141 }
142 
143 template<typename Solver, typename Rhs>
144 void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const typename Solver::MatrixType& fullA, const Rhs& refX)
145 {
146  typedef typename Solver::MatrixType Mat;
147  typedef typename Mat::Scalar Scalar;
148  typedef typename Mat::RealScalar RealScalar;
149 
150  Rhs x(A.cols(), b.cols());
151 
152  solver.compute(A);
153  if (solver.info() != Success)
154  {
155  std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n";
156  VERIFY(solver.info() == Success);
157  }
158  x = solver.solve(b);
159 
160  if (solver.info() != Success)
161  {
162  std::cerr << "WARNING | sparse solver testing, solving failed (" << typeid(Solver).name() << ")\n";
163  return;
164  }
165 
166  RealScalar res_error = (fullA*x-b).norm()/b.norm();
167  VERIFY( (res_error <= test_precision<Scalar>() ) && "sparse solver failed without noticing it");
168 
169 
170  if(refX.size() != 0 && (refX - x).norm()/refX.norm() > test_precision<Scalar>())
171  {
172  std::cerr << "WARNING | found solution is different from the provided reference one\n";
173  }
174 
175 }
176 template<typename Solver, typename DenseMat>
177 void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
178 {
179  typedef typename Solver::MatrixType Mat;
180  typedef typename Mat::Scalar Scalar;
181 
182  solver.compute(A);
183  if (solver.info() != Success)
184  {
185  std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_determinant)\n";
186  return;
187  }
188 
189  Scalar refDet = dA.determinant();
190  VERIFY_IS_APPROX(refDet,solver.determinant());
191 }
192 template<typename Solver, typename DenseMat>
193 void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
194 {
195  using std::abs;
196  typedef typename Solver::MatrixType Mat;
197  typedef typename Mat::Scalar Scalar;
198 
199  solver.compute(A);
200  if (solver.info() != Success)
201  {
202  std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_abs_determinant)\n";
203  return;
204  }
205 
206  Scalar refDet = abs(dA.determinant());
207  VERIFY_IS_APPROX(refDet,solver.absDeterminant());
208 }
209 
210 template<typename Solver, typename DenseMat>
211 int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
212 {
213  typedef typename Solver::MatrixType Mat;
214  typedef typename Mat::Scalar Scalar;
216 
217  int size = internal::random<int>(1,maxSize);
218  double density = (std::max)(8./(size*size), 0.01);
219 
220  Mat M(size, size);
221  DenseMatrix dM(size, size);
222 
223  initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
224 
225  A = M * M.adjoint();
226  dA = dM * dM.adjoint();
227 
228  halfA.resize(size,size);
229  if(Solver::UpLo==(Lower|Upper))
230  halfA = A;
231  else
232  halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
233 
234  return size;
235 }
236 
237 
238 #ifdef TEST_REAL_CASES
239 template<typename Scalar>
240 inline std::string get_matrixfolder()
241 {
242  std::string mat_folder = TEST_REAL_CASES;
243  if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
244  mat_folder = mat_folder + static_cast<std::string>("/complex/");
245  else
246  mat_folder = mat_folder + static_cast<std::string>("/real/");
247  return mat_folder;
248 }
249 std::string sym_to_string(int sym)
250 {
251  if(sym==Symmetric) return "Symmetric ";
252  if(sym==SPD) return "SPD ";
253  return "";
254 }
255 template<typename Derived>
256 std::string solver_stats(const IterativeSolverBase<Derived> &solver)
257 {
258  std::stringstream ss;
259  ss << solver.iterations() << " iters, error: " << solver.error();
260  return ss.str();
261 }
262 template<typename Derived>
263 std::string solver_stats(const SparseSolverBase<Derived> &/*solver*/)
264 {
265  return "";
266 }
267 #endif
268 
269 template<typename Solver> void check_sparse_spd_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000)
270 {
271  typedef typename Solver::MatrixType Mat;
272  typedef typename Mat::Scalar Scalar;
273  typedef typename Mat::StorageIndex StorageIndex;
278 
279  // generate the problem
280  Mat A, halfA;
281  DenseMatrix dA;
282  for (int i = 0; i < g_repeat; i++) {
283  int size = generate_sparse_spd_problem(solver, A, halfA, dA, maxSize);
284 
285  // generate the right hand sides
286  int rhsCols = internal::random<int>(1,16);
287  double density = (std::max)(8./(size*rhsCols), 0.1);
288  SpMat B(size,rhsCols);
289  DenseVector b = DenseVector::Random(size);
290  DenseMatrix dB(size,rhsCols);
291  initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
292  SpVec c = B.col(0);
293  DenseVector dc = dB.col(0);
294 
295  CALL_SUBTEST( check_sparse_solving(solver, A, b, dA, b) );
296  CALL_SUBTEST( check_sparse_solving(solver, halfA, b, dA, b) );
297  CALL_SUBTEST( check_sparse_solving(solver, A, dB, dA, dB) );
298  CALL_SUBTEST( check_sparse_solving(solver, halfA, dB, dA, dB) );
299  CALL_SUBTEST( check_sparse_solving(solver, A, B, dA, dB) );
300  CALL_SUBTEST( check_sparse_solving(solver, halfA, B, dA, dB) );
301  CALL_SUBTEST( check_sparse_solving(solver, A, c, dA, dc) );
302  CALL_SUBTEST( check_sparse_solving(solver, halfA, c, dA, dc) );
303 
304  // check only once
305  if(i==0)
306  {
307  b = DenseVector::Zero(size);
308  check_sparse_solving(solver, A, b, dA, b);
309  }
310  }
311 
312  // First, get the folder
313 #ifdef TEST_REAL_CASES
314  // Test real problems with double precision only
315  if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value)
316  {
317  std::string mat_folder = get_matrixfolder<Scalar>();
318  MatrixMarketIterator<Scalar> it(mat_folder);
319  for (; it; ++it)
320  {
321  if (it.sym() == SPD){
322  A = it.matrix();
323  if(A.diagonal().size() <= maxRealWorldSize)
324  {
325  DenseVector b = it.rhs();
326  DenseVector refX = it.refX();
328  halfA.resize(A.rows(), A.cols());
329  if(Solver::UpLo == (Lower|Upper))
330  halfA = A;
331  else
332  halfA.template selfadjointView<Solver::UpLo>() = A.template triangularView<Eigen::Lower>().twistedBy(pnull);
333 
334  std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname()
335  << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl;
336  CALL_SUBTEST( check_sparse_solving_real_cases(solver, A, b, A, refX) );
337  std::string stats = solver_stats(solver);
338  if(stats.size()>0)
339  std::cout << "INFO | " << stats << std::endl;
340  CALL_SUBTEST( check_sparse_solving_real_cases(solver, halfA, b, A, refX) );
341  }
342  else
343  {
344  std::cout << "INFO | Skip sparse problem \"" << it.matname() << "\" (too large)" << std::endl;
345  }
346  }
347  }
348  }
349 #else
350  EIGEN_UNUSED_VARIABLE(maxRealWorldSize);
351 #endif
352 }
353 
354 template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
355 {
356  typedef typename Solver::MatrixType Mat;
357  typedef typename Mat::Scalar Scalar;
359 
360  // generate the problem
361  Mat A, halfA;
362  DenseMatrix dA;
363  generate_sparse_spd_problem(solver, A, halfA, dA, 30);
364 
365  for (int i = 0; i < g_repeat; i++) {
366  check_sparse_determinant(solver, A, dA);
367  check_sparse_determinant(solver, halfA, dA );
368  }
369 }
370 
371 template<typename Solver, typename DenseMat>
372 Index generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
373 {
374  typedef typename Solver::MatrixType Mat;
375  typedef typename Mat::Scalar Scalar;
376 
377  Index size = internal::random<int>(1,maxSize);
378  double density = (std::max)(8./(size*size), 0.01);
379 
380  A.resize(size,size);
381  dA.resize(size,size);
382 
383  initSparse<Scalar>(density, dA, A, options);
384 
385  return size;
386 }
387 
388 
389 struct prune_column {
391  prune_column(Index col) : m_col(col) {}
392  template<class Scalar>
393  bool operator()(Index, Index col, const Scalar&) const {
394  return col != m_col;
395  }
396 };
397 
398 
399 template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000, bool checkDeficient = false)
400 {
401  typedef typename Solver::MatrixType Mat;
402  typedef typename Mat::Scalar Scalar;
407 
408  int rhsCols = internal::random<int>(1,16);
409 
410  Mat A;
411  DenseMatrix dA;
412  for (int i = 0; i < g_repeat; i++) {
413  Index size = generate_sparse_square_problem(solver, A, dA, maxSize);
414 
415  A.makeCompressed();
416  DenseVector b = DenseVector::Random(size);
417  DenseMatrix dB(size,rhsCols);
418  SpMat B(size,rhsCols);
419  double density = (std::max)(8./(size*rhsCols), 0.1);
420  initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
421  B.makeCompressed();
422  SpVec c = B.col(0);
423  DenseVector dc = dB.col(0);
424  CALL_SUBTEST(check_sparse_solving(solver, A, b, dA, b));
425  CALL_SUBTEST(check_sparse_solving(solver, A, dB, dA, dB));
426  CALL_SUBTEST(check_sparse_solving(solver, A, B, dA, dB));
427  CALL_SUBTEST(check_sparse_solving(solver, A, c, dA, dc));
428 
429  // check only once
430  if(i==0)
431  {
432  b = DenseVector::Zero(size);
433  check_sparse_solving(solver, A, b, dA, b);
434  }
435  // regression test for Bug 792 (structurally rank deficient matrices):
436  if(checkDeficient && size>1) {
437  Index col = internal::random<int>(0,int(size-1));
438  A.prune(prune_column(col));
439  solver.compute(A);
440  VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
441  }
442  }
443 
444  // First, get the folder
445 #ifdef TEST_REAL_CASES
446  // Test real problems with double precision only
447  if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value)
448  {
449  std::string mat_folder = get_matrixfolder<Scalar>();
450  MatrixMarketIterator<Scalar> it(mat_folder);
451  for (; it; ++it)
452  {
453  A = it.matrix();
454  if(A.diagonal().size() <= maxRealWorldSize)
455  {
456  DenseVector b = it.rhs();
457  DenseVector refX = it.refX();
458  std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname()
459  << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl;
460  CALL_SUBTEST(check_sparse_solving_real_cases(solver, A, b, A, refX));
461  std::string stats = solver_stats(solver);
462  if(stats.size()>0)
463  std::cout << "INFO | " << stats << std::endl;
464  }
465  else
466  {
467  std::cout << "INFO | SKIP sparse problem \"" << it.matname() << "\" (too large)" << std::endl;
468  }
469  }
470  }
471 #else
472  EIGEN_UNUSED_VARIABLE(maxRealWorldSize);
473 #endif
474 
475 }
476 
477 template<typename Solver> void check_sparse_square_determinant(Solver& solver)
478 {
479  typedef typename Solver::MatrixType Mat;
480  typedef typename Mat::Scalar Scalar;
482 
483  for (int i = 0; i < g_repeat; i++) {
484  // generate the problem
485  Mat A;
486  DenseMatrix dA;
487 
488  int size = internal::random<int>(1,30);
489  dA.setRandom(size,size);
490 
491  dA = (dA.array().abs()<0.3).select(0,dA);
492  dA.diagonal() = (dA.diagonal().array()==0).select(1,dA.diagonal());
493  A = dA.sparseView();
494  A.makeCompressed();
495 
496  check_sparse_determinant(solver, A, dA);
497  }
498 }
499 
500 template<typename Solver> void check_sparse_square_abs_determinant(Solver& solver)
501 {
502  typedef typename Solver::MatrixType Mat;
503  typedef typename Mat::Scalar Scalar;
505 
506  for (int i = 0; i < g_repeat; i++) {
507  // generate the problem
508  Mat A;
509  DenseMatrix dA;
510  generate_sparse_square_problem(solver, A, dA, 30);
511  A.makeCompressed();
512  check_sparse_abs_determinant(solver, A, dA);
513  }
514 }
515 
516 template<typename Solver, typename DenseMat>
517 void generate_sparse_leastsquare_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag)
518 {
519  typedef typename Solver::MatrixType Mat;
520  typedef typename Mat::Scalar Scalar;
521 
522  int rows = internal::random<int>(1,maxSize);
523  int cols = internal::random<int>(1,rows);
524  double density = (std::max)(8./(rows*cols), 0.01);
525 
526  A.resize(rows,cols);
527  dA.resize(rows,cols);
528 
529  initSparse<Scalar>(density, dA, A, options);
530 }
531 
532 template<typename Solver> void check_sparse_leastsquare_solving(Solver& solver)
533 {
534  typedef typename Solver::MatrixType Mat;
535  typedef typename Mat::Scalar Scalar;
539 
540  int rhsCols = internal::random<int>(1,16);
541 
542  Mat A;
543  DenseMatrix dA;
544  for (int i = 0; i < g_repeat; i++) {
546 
547  A.makeCompressed();
548  DenseVector b = DenseVector::Random(A.rows());
549  DenseMatrix dB(A.rows(),rhsCols);
550  SpMat B(A.rows(),rhsCols);
551  double density = (std::max)(8./(A.rows()*rhsCols), 0.1);
552  initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
553  B.makeCompressed();
554  check_sparse_solving(solver, A, b, dA, b);
555  check_sparse_solving(solver, A, dB, dA, dB);
556  check_sparse_solving(solver, A, B, dA, dB);
557 
558  // check only once
559  if(i==0)
560  {
561  b = DenseVector::Zero(A.rows());
562  check_sparse_solving(solver, A, b, dA, b);
563  }
564  }
565 }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const
Matrix< Scalar, Dynamic, Dynamic > DenseMatrix
SCALAR Scalar
Definition: bench_gemm.cpp:33
internal::traits< Derived >::Scalar Scalar
#define max(a, b)
Definition: datatypes.h:20
Matrix< RealScalar, Dynamic, Dynamic > M
Definition: bench_gemm.cpp:38
void check_sparse_solving(Solver &solver, const typename Solver::MatrixType &A, const Rhs &b, const DenseMat &dA, const DenseRhs &db)
Definition: sparse_solver.h:42
Scalar * b
Definition: benchVecAdd.cpp:17
return int(ret)+1
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:94
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const
A base class for sparse solvers.
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
MatrixXf MatrixType
void check_sparse_determinant(Solver &solver, const typename Solver::MatrixType &A, const DenseMat &dA)
BiCGSTAB< SparseMatrix< double > > solver
Pose3 x2(Rot3::Ypr(0.0, 0.0, 0.0), l2)
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
void check_sparse_spd_determinant(Solver &solver)
bool operator()(Index, Index col, const Scalar &) const
Matrix< SCALARA, Dynamic, Dynamic > A
Definition: bench_gemm.cpp:35
Matrix< SCALARB, Dynamic, Dynamic > B
Definition: bench_gemm.cpp:36
bool stats
void g(const string &key, int i)
Definition: testBTree.cpp:43
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
Matrix< Scalar, Dynamic, 1 > DenseVector
#define VERIFY_IS_APPROX(a, b)
void check_sparse_leastsquare_solving(Solver &solver)
Base class of any sparse matrices or sparse expressions.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:331
prune_column(Index col)
void check_sparse_solving_real_cases(Solver &solver, const typename Solver::MatrixType &A, const Rhs &b, const typename Solver::MatrixType &fullA, const Rhs &refX)
a sparse vector class
Definition: SparseUtil.h:54
static int g_repeat
Definition: main.h:144
idx_t idx_t idx_t idx_t idx_t idx_t idx_t real_t real_t idx_t * options
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:33
Iterator to browse matrices from a specified folder.
Matrix< Scalar, Dynamic, Dynamic > Mat
Definition: gemm.cpp:14
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:34
static std::stringstream ss
Definition: testBTree.cpp:33
Eigen::SparseMatrix< double > SpMat
int generate_sparse_spd_problem(Solver &, typename Solver::MatrixType &A, typename Solver::MatrixType &halfA, DenseMat &dA, int maxSize=300)
void check_sparse_abs_determinant(Solver &solver, const typename Solver::MatrixType &A, const DenseMat &dA)
#define CALL_SUBTEST(FUNC)
Definition: main.h:342
void check_sparse_spd_solving(Solver &solver, int maxSize=300, int maxRealWorldSize=100000)
#define VERIFY(a)
Definition: main.h:325
m col(1)
Index generate_sparse_square_problem(Solver &, typename Solver::MatrixType &A, DenseMat &dA, int maxSize=300, int options=ForceNonZeroDiag)
void generate_sparse_leastsquare_problem(Solver &, typename Solver::MatrixType &A, DenseMat &dA, int maxSize=300, int options=ForceNonZeroDiag)
void solve_with_guess(IterativeSolverBase< Solver > &solver, const MatrixBase< Rhs > &b, const Guess &g, Result &x)
Definition: sparse_solver.h:15
internal::nested_eval< T, 1 >::type eval(const T &xpr)
void check_sparse_square_determinant(Solver &solver)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
#define abs(x)
Definition: datatypes.h:17
Base class for linear iterative solvers.
NumTraits< Scalar >::Real RealScalar
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
void check_sparse_square_abs_determinant(Solver &solver)
void check_sparse_square_solving(Solver &solver, int maxSize=300, int maxRealWorldSize=100000, bool checkDeficient=false)
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:618


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:44:18