A conjugate gradient solver for sparse (or dense) self-adjoint problems. More...
#include <ConjugateGradient.h>
Public Types | |
enum | { UpLo = _UpLo } |
typedef _MatrixType | MatrixType |
typedef _Preconditioner | Preconditioner |
typedef MatrixType::RealScalar | RealScalar |
typedef MatrixType::Scalar | Scalar |
Public Types inherited from Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > > | |
enum | |
typedef internal::traits< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::MatrixType | MatrixType |
typedef internal::traits< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::Preconditioner | Preconditioner |
typedef MatrixType::RealScalar | RealScalar |
typedef MatrixType::Scalar | Scalar |
typedef MatrixType::StorageIndex | StorageIndex |
Public Member Functions | |
template<typename Rhs , typename Dest > | |
void | _solve_impl (const MatrixBase< Rhs > &b, Dest &x) const |
template<typename Rhs , typename Dest > | |
void | _solve_with_guess_impl (const Rhs &b, Dest &x) const |
ConjugateGradient () | |
template<typename MatrixDerived > | |
ConjugateGradient (const EigenBase< MatrixDerived > &A) | |
~ConjugateGradient () | |
Public Member Functions inherited from Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > > | |
void | _solve_impl (const Rhs &b, SparseMatrixBase< DestDerived > &aDest) const |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | analyzePattern (const EigenBase< MatrixDerived > &A) |
Index | cols () const |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | compute (const EigenBase< MatrixDerived > &A) |
RealScalar | error () const |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | factorize (const EigenBase< MatrixDerived > &A) |
ComputationInfo | info () const |
Index | iterations () const |
IterativeSolverBase () | |
IterativeSolverBase (const EigenBase< MatrixDerived > &A) | |
Index | maxIterations () const |
Preconditioner & | preconditioner () |
const Preconditioner & | preconditioner () const |
Index | rows () const |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | setMaxIterations (Index maxIters) |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | setTolerance (const RealScalar &tolerance) |
const SolveWithGuess< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >, Rhs, Guess > | solveWithGuess (const MatrixBase< Rhs > &b, const Guess &x0) const |
RealScalar | tolerance () const |
~IterativeSolverBase () | |
Public Member Functions inherited from Eigen::SparseSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > > | |
void | _solve_impl (const SparseMatrixBase< Rhs > &b, SparseMatrixBase< Dest > &dest) const |
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | derived () |
const ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | derived () const |
const Solve< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
const Solve< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >, Rhs > | solve (const SparseMatrixBase< Rhs > &b) const |
SparseSolverBase () | |
~SparseSolverBase () | |
Private Types | |
typedef IterativeSolverBase< ConjugateGradient > | Base |
A conjugate gradient solver for sparse (or dense) self-adjoint problems.
This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm. The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
_MatrixType | the type of the matrix A, can be a dense or a sparse matrix. |
_UpLo | the triangular part that will be used for the computations. It can be Lower, Upper , or Lower|Upper in which the full matrix entries will be considered. Default is Lower , best performance is Lower|Upper . |
_Preconditioner | the type of the preconditioner. Default is DiagonalPreconditioner |
The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.
The tolerance corresponds to the relative residual error: |Ax-b|/|b|
Performance: Even though the default value of _UpLo
is Lower
, significantly higher performance is achieved when using a complete matrix and Lower|Upper as the _UpLo template parameter. Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled. See Eigen and multi-threading for details.
This class can be used as the direct solver classes. Here is a typical usage example:
By default the iterations start with x=0 as an initial guess of the solution. One can control the start using the solveWithGuess() method.
ConjugateGradient can also be used in a matrix-free context, see the following example .
Definition at line 97 of file ConjugateGradient.h.
|
private |
Definition at line 160 of file ConjugateGradient.h.
typedef _MatrixType Eigen::ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >::MatrixType |
Definition at line 167 of file ConjugateGradient.h.
typedef _Preconditioner Eigen::ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >::Preconditioner |
Definition at line 170 of file ConjugateGradient.h.
typedef MatrixType::RealScalar Eigen::ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >::RealScalar |
Definition at line 169 of file ConjugateGradient.h.
typedef MatrixType::Scalar Eigen::ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >::Scalar |
Definition at line 168 of file ConjugateGradient.h.
anonymous enum |
Enumerator | |
---|---|
UpLo |
Definition at line 172 of file ConjugateGradient.h.
|
inline |
Default constructor.
Definition at line 179 of file ConjugateGradient.h.
|
inlineexplicit |
Initialize the solver with matrix A for further Ax=b
solving.
This constructor is a shortcut for the default constructor followed by a call to compute().
Definition at line 192 of file ConjugateGradient.h.
|
inline |
Definition at line 194 of file ConjugateGradient.h.
|
inline |
Definition at line 234 of file ConjugateGradient.h.
|
inline |
Definition at line 198 of file ConjugateGradient.h.