Rotation2D.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_ROTATION2D_H
11 #define EIGEN_ROTATION2D_H
12 
13 namespace Eigen {
14 
32 namespace internal {
33 
34 template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
35 {
36  typedef _Scalar Scalar;
37 };
38 } // end namespace internal
39 
40 template<typename _Scalar>
41 class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
42 {
44 
45 public:
46 
47  using Base::operator*;
48 
49  enum { Dim = 2 };
51  typedef _Scalar Scalar;
54 
55 protected:
56 
57  Scalar m_angle;
58 
59 public:
60 
62  EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
63 
65  EIGEN_DEVICE_FUNC Rotation2D() {}
66 
71  template<typename Derived>
72  EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
73  {
74  fromRotationMatrix(m.derived());
75  }
76 
78  EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
79 
81  EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
82 
84  EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
85  Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
86  return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
87  }
88 
90  EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
91  Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
92  if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI);
93  else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
94  return tmp;
95  }
96 
98  EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
99 
101  EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
102  { return Rotation2D(m_angle + other.m_angle); }
103 
105  EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
106  { m_angle += other.m_angle; return *this; }
107 
109  EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
110  { return toRotationMatrix() * vec; }
111 
112  template<typename Derived>
113  EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
114  EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
115 
123  template<typename Derived>
124  EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m)
125  { return fromRotationMatrix(m.derived()); }
126 
130  EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
131  {
132  Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
133  return Rotation2D(m_angle + dist*t);
134  }
135 
141  template<typename NewScalarType>
144 
146  template<typename OtherScalarType>
147  EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
148  {
149  m_angle = Scalar(other.angle());
150  }
151 
152  EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
153 
158  EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
159  { return internal::isApprox(m_angle,other.m_angle, prec); }
160 
161 };
162 
169 
174 template<typename Scalar>
175 template<typename Derived>
177 {
178  EIGEN_USING_STD_MATH(atan2)
179  EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
180  m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
181  return *this;
182 }
183 
186 template<typename Scalar>
188 EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const
189 {
190  EIGEN_USING_STD_MATH(sin)
191  EIGEN_USING_STD_MATH(cos)
192  Scalar sinA = sin(m_angle);
193  Scalar cosA = cos(m_angle);
194  return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
195 }
196 
197 } // end namespace Eigen
198 
199 #endif // EIGEN_ROTATION2D_H
EIGEN_DEVICE_FUNC Scalar angle() const
Definition: Rotation2D.h:78
Matrix3f m
static EIGEN_DEVICE_FUNC Rotation2D Identity()
Definition: Rotation2D.h:152
SCALAR Scalar
Definition: bench_gemm.cpp:33
EIGEN_DEVICE_FUNC Rotation2D inverse() const
Definition: Rotation2D.h:98
#define EIGEN_PI
EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
Definition: Rotation2D.h:158
EIGEN_DEVICE_FUNC Rotation2D slerp(const Scalar &t, const Rotation2D &other) const
Definition: Rotation2D.h:130
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
RotationBase< Rotation2D< _Scalar >, 2 > Base
Definition: Rotation2D.h:43
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:150
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:124
Array33i a
EIGEN_DEVICE_FUNC Rotation2D(const Rotation2D< OtherScalarType > &other)
Definition: Rotation2D.h:147
EIGEN_DEVICE_FUNC const CosReturnType cos() const
static EIGEN_DEVICE_FUNC Matrix< Scalar, 2, 2 > toRotationMatrix(const Scalar &s)
Definition: RotationBase.h:182
EIGEN_DEVICE_FUNC Scalar smallestAngle() const
Definition: Rotation2D.h:90
EIGEN_DEVICE_FUNC Rotation2D(const MatrixBase< Derived > &m)
Definition: Rotation2D.h:72
EIGEN_DEVICE_FUNC internal::cast_return_type< Rotation2D, Rotation2D< NewScalarType > >::type cast() const
Definition: Rotation2D.h:142
Common base class for compact rotation representations.
EIGEN_DEVICE_FUNC Rotation2D(const Scalar &a)
Definition: Rotation2D.h:62
EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const
Definition: Rotation2D.h:188
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorUInt128< uint64_t, uint64_t > operator*(const TensorUInt128< HL, LL > &lhs, const TensorUInt128< HR, LR > &rhs)
EIGEN_DEVICE_FUNC Rotation2D & operator*=(const Rotation2D &other)
Definition: Rotation2D.h:105
EIGEN_DEVICE_FUNC Rotation2D & fromRotationMatrix(const MatrixBase< Derived > &m)
Matrix< Scalar, 2, 2 > Matrix2
Definition: Rotation2D.h:53
Represents a rotation/orientation in a 2 dimensional space.
EIGEN_DEVICE_FUNC Rotation2D & operator=(const MatrixBase< Derived > &m)
Definition: Rotation2D.h:124
EIGEN_DEVICE_FUNC Rotation2D operator*(const Rotation2D &other) const
Definition: Rotation2D.h:101
EIGEN_DEVICE_FUNC Scalar & angle()
Definition: Rotation2D.h:81
const AutoDiffScalar< Matrix< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar, Dynamic, 1 > > atan2(const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)
Rotation2D< double > Rotation2Dd
Definition: Rotation2D.h:168
EIGEN_DEVICE_FUNC const SinReturnType sin() const
Matrix< Scalar, 2, 1 > Vector2
Definition: Rotation2D.h:52
The matrix class, also used for vectors and row-vectors.
Rotation2D< float > Rotation2Df
Definition: Rotation2D.h:165
EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
EIGEN_DEVICE_FUNC Rotation2D()
Definition: Rotation2D.h:65
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T fmod(const T &a, const T &b)
Point2 t(10, 10)
Definition: pytypes.h:897
EIGEN_DEVICE_FUNC Scalar smallestPositiveAngle() const
Definition: Rotation2D.h:84


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:43:53