11 #ifndef EIGEN_MATRIX_EXPONENTIAL 12 #define EIGEN_MATRIX_EXPONENTIAL 23 template <
typename RealScalar>
49 inline const ComplexScalar
operator() (
const ComplexScalar&
x)
const 64 template <
typename MatA,
typename MatU,
typename MatV>
69 const RealScalar
b[] = {120.L, 60.L, 12.L, 1.L};
70 const MatrixType A2 = A * A;
71 const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
72 U.noalias() = A * tmp;
73 V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
81 template <
typename MatA,
typename MatU,
typename MatV>
86 const RealScalar
b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
87 const MatrixType A2 = A * A;
88 const MatrixType A4 = A2 * A2;
89 const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
90 U.noalias() = A * tmp;
91 V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
99 template <
typename MatA,
typename MatU,
typename MatV>
102 typedef typename MatA::PlainObject
MatrixType;
104 const RealScalar
b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
105 const MatrixType A2 = A * A;
106 const MatrixType A4 = A2 * A2;
107 const MatrixType A6 = A4 * A2;
108 const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
109 + b[1] * MatrixType::Identity(A.rows(), A.cols());
110 U.noalias() = A * tmp;
111 V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
120 template <
typename MatA,
typename MatU,
typename MatV>
123 typedef typename MatA::PlainObject
MatrixType;
125 const RealScalar
b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
126 2162160.L, 110880.L, 3960.L, 90.L, 1.L};
127 const MatrixType A2 = A * A;
128 const MatrixType A4 = A2 * A2;
129 const MatrixType A6 = A4 * A2;
130 const MatrixType A8 = A6 * A2;
131 const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
132 + b[1] * MatrixType::Identity(A.rows(), A.cols());
133 U.noalias() = A * tmp;
134 V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
142 template <
typename MatA,
typename MatU,
typename MatV>
145 typedef typename MatA::PlainObject
MatrixType;
147 const RealScalar
b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
148 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
149 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
150 const MatrixType A2 = A * A;
151 const MatrixType A4 = A2 * A2;
152 const MatrixType A6 = A4 * A2;
153 V = b[13] * A6 + b[11] * A4 + b[9] * A2;
154 MatrixType tmp = A6 *
V;
155 tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
156 U.noalias() = A * tmp;
157 tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
158 V.noalias() = A6 * tmp;
159 V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
169 #if LDBL_MANT_DIG > 64 170 template <
typename MatA,
typename MatU,
typename MatV>
171 void matrix_exp_pade17(
const MatA&
A, MatU&
U, MatV&
V)
173 typedef typename MatA::PlainObject
MatrixType;
175 const RealScalar
b[] = {830034394580628357120000.L, 415017197290314178560000.L,
176 100610229646136770560000.L, 15720348382208870400000.L,
177 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
178 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
179 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
180 46512.L, 306.L, 1.L};
181 const MatrixType A2 = A * A;
182 const MatrixType A4 = A2 * A2;
183 const MatrixType A6 = A4 * A2;
184 const MatrixType A8 = A4 * A4;
185 V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2;
186 MatrixType tmp = A8 *
V;
187 tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
188 + b[1] * MatrixType::Identity(A.rows(), A.cols());
189 U.noalias() = A * tmp;
190 tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
191 V.noalias() = tmp * A8;
192 V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
193 + b[0] * MatrixType::Identity(A.rows(), A.cols());
210 template <
typename MatrixType>
213 template <
typename ArgType>
218 const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
220 if (l1norm < 4.258730016922831
e-001
f) {
222 }
else if (l1norm < 1.880152677804762
e+000
f) {
225 const float maxnorm = 3.925724783138660f;
226 frexp(l1norm / maxnorm, &squarings);
227 if (squarings < 0) squarings = 0;
234 template <
typename MatrixType>
238 template <
typename ArgType>
243 const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
245 if (l1norm < 1.495585217958292
e-002) {
247 }
else if (l1norm < 2.539398330063230
e-001) {
249 }
else if (l1norm < 9.504178996162932
e-001) {
251 }
else if (l1norm < 2.097847961257068
e+000) {
254 const RealScalar maxnorm = 5.371920351148152;
255 frexp(l1norm / maxnorm, &squarings);
256 if (squarings < 0) squarings = 0;
263 template <
typename MatrixType>
266 template <
typename ArgType>
269 #if LDBL_MANT_DIG == 53 // double precision 276 const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
279 #if LDBL_MANT_DIG <= 64 // extended precision 281 if (l1norm < 4.1968497232266989671
e-003
L) {
283 }
else if (l1norm < 1.1848116734693823091
e-001
L) {
285 }
else if (l1norm < 5.5170388480686700274
e-001
L) {
287 }
else if (l1norm < 1.3759868875587845383
e+000
L) {
290 const long double maxnorm = 4.0246098906697353063L;
291 frexp(l1norm / maxnorm, &squarings);
292 if (squarings < 0) squarings = 0;
297 #elif LDBL_MANT_DIG <= 106 // double-double 299 if (l1norm < 3.2787892205607026992947488108213
e-005
L) {
301 }
else if (l1norm < 6.4467025060072760084130906076332
e-003
L) {
303 }
else if (l1norm < 6.8988028496595374751374122881143
e-002
L) {
305 }
else if (l1norm < 2.7339737518502231741495857201670
e-001
L) {
307 }
else if (l1norm < 1.3203382096514474905666448850278
e+000
L) {
310 const long double maxnorm = 3.2579440895405400856599663723517L;
311 frexp(l1norm / maxnorm, &squarings);
312 if (squarings < 0) squarings = 0;
314 matrix_exp_pade17(A, U, V);
317 #elif LDBL_MANT_DIG <= 112 // quadruple precison 319 if (l1norm < 1.639394610288918690547467954466970
e-005
L) {
321 }
else if (l1norm < 4.253237712165275566025884344433009
e-003
L) {
323 }
else if (l1norm < 5.125804063165764409885122032933142
e-002
L) {
325 }
else if (l1norm < 2.170000765161155195453205651889853
e-001
L) {
327 }
else if (l1norm < 1.125358383453143065081397882891878
e+000
L) {
330 const long double maxnorm = 2.884233277829519311757165057717815L;
331 frexp(l1norm / maxnorm, &squarings);
332 if (squarings < 0) squarings = 0;
334 matrix_exp_pade17(A, U, V);
343 #endif // LDBL_MANT_DIG 350 #if LDBL_MANT_DIG <= 112 354 template <
typename ArgType,
typename ResultType>
357 typedef typename ArgType::PlainObject
MatrixType;
361 MatrixType numer = U +
V;
362 MatrixType denom = -U +
V;
363 result = denom.partialPivLu().solve(numer);
364 for (
int i=0;
i<squarings;
i++)
374 template <
typename ArgType,
typename ResultType>
377 typedef typename ArgType::PlainObject
MatrixType;
381 result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
397 :
public ReturnByValue<MatrixExponentialReturnValue<Derived> >
411 template <
typename ResultType>
418 Index
rows()
const {
return m_src.rows(); }
419 Index
cols()
const {
return m_src.cols(); }
426 template<
typename Derived>
433 template <
typename Derived>
442 #endif // EIGEN_MATRIX_EXPONENTIAL
void evalTo(ResultType &result) const
Compute the matrix exponential.
EIGEN_DEVICE_FUNC const ExpReturnType exp() const
const mpreal ldexp(const mpreal &v, mp_exp_t exp)
Namespace containing all symbols from the Eigen library.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
void matrix_exp_compute(const ArgType &arg, ResultType &result, true_type)
Compute the (17,17)-Padé approximant to the exponential.
Derived::PlainObject ReturnType
void matrix_exp_pade13(const MatA &A, MatU &U, MatV &V)
Compute the (13,13)-Padé approximant to the exponential.
static void run(const MatrixType &arg, MatrixType &U, MatrixType &V, int &squarings)
Compute Padé approximant to the exponential.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
static void run(const ArgType &arg, MatrixType &U, MatrixType &V, int &squarings)
const internal::ref_selector< Derived >::type m_src
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
static void run(const ArgType &arg, MatrixType &U, MatrixType &V, int &squarings)
void matrix_exp_pade3(const MatA &A, MatU &U, MatV &V)
Compute the (3,3)-Padé approximant to the exponential.
NumTraits< typename traits< MatrixType >::Scalar >::Real RealScalar
NumTraits< Scalar >::Real RealScalar
const mpreal frexp(const mpreal &x, mp_exp_t *exp, mp_rnd_t mode=mpreal::get_default_rnd())
void matrix_exp_pade5(const MatA &A, MatU &U, MatV &V)
Compute the (5,5)-Padé approximant to the exponential.
void matrix_exp_pade9(const MatA &A, MatU &U, MatV &V)
Compute the (9,9)-Padé approximant to the exponential.
mp::number< mp::cpp_dec_float< 100 >, mp::et_on > Real
MatrixExponentialScalingOp(int squarings)
Constructor.
std::complex< RealScalar > ComplexScalar
void matrix_exp_pade7(const MatA &A, MatU &U, MatV &V)
Compute the (7,7)-Padé approximant to the exponential.
Proxy for the matrix exponential of some matrix (expression).
const RealScalar operator()(const RealScalar &x) const
Scale a matrix coefficient.
Jet< T, N > pow(const Jet< T, N > &f, double g)
static void run(const ArgType &arg, MatrixType &U, MatrixType &V, int &squarings)
MatrixExponentialReturnValue(const Derived &src)
Constructor.
void run(Expr &expr, Dev &dev)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x