GaussMarkov1stOrderFactor.h
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------------
2 
3  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
4  * Atlanta, Georgia 30332-0415
5  * All Rights Reserved
6  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
7 
8  * See LICENSE for the license information
9 
10  * -------------------------------------------------------------------------- */
11 
17 #pragma once
18 
22 #include <gtsam/base/Testable.h>
23 #include <gtsam/base/Lie.h>
24 
25 #include <ostream>
26 
27 namespace gtsam {
28 
29 /*
30  * - The 1st order GaussMarkov factor relates two keys of the same type. This relation is given via
31  * key_2 = exp(-1/tau*delta_t) * key1 + w_d
32  * where tau is the time constant and delta_t is the time difference between the two keys.
33  * w_d is the equivalent discrete noise, whose covariance is calculated from the continuous noise model and delta_t.
34  * - w_d is approximated as a Gaussian noise.
35  * - In the multi-dimensional case, tau is a vector, and the above equation is applied on each element
36  * in the state (represented by keys), using the appropriate time constant in the vector tau.
37  */
38 
39 /*
40  * A class for a measurement predicted by "GaussMarkov1stOrderFactor(config[key1],config[key2])"
41  * KEY1::Value is the Lie Group type
42  * T is the measurement type, by default the same
43  */
44 template<class VALUE>
45 class GaussMarkov1stOrderFactor: public NoiseModelFactor2<VALUE, VALUE> {
46 
47 private:
48 
51 
52  double dt_;
54 
55 public:
56 
57  // shorthand for a smart pointer to a factor
58  typedef typename boost::shared_ptr<GaussMarkov1stOrderFactor> shared_ptr;
59 
62 
64  GaussMarkov1stOrderFactor(const Key& key1, const Key& key2, double delta_t, Vector tau,
65  const SharedGaussian& model) :
66  Base(calcDiscreteNoiseModel(model, delta_t), key1, key2), dt_(delta_t), tau_(tau) {
67  }
68 
70 
74  void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
75  std::cout << s << "GaussMarkov1stOrderFactor("
76  << keyFormatter(this->key1()) << ","
77  << keyFormatter(this->key2()) << ")\n";
78  this->noiseModel_->print(" noise model");
79  }
80 
82  bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
83  const This *e = dynamic_cast<const This*> (&expected);
84  return e != nullptr && Base::equals(*e, tol);
85  }
86 
90  Vector evaluateError(const VALUE& p1, const VALUE& p2,
91  boost::optional<Matrix&> H1 = boost::none,
92  boost::optional<Matrix&> H2 = boost::none) const override {
93 
96 
97  Vector alpha(tau_.size());
98  Vector alpha_v1(tau_.size());
99  for(int i=0; i<tau_.size(); i++){
100  alpha(i) = exp(- 1/tau_(i)*dt_ );
101  alpha_v1(i) = alpha(i) * v1(i);
102  }
103 
104  Vector hx(v2 - alpha_v1);
105 
106  if(H1) *H1 = -1 * alpha.asDiagonal();
107  if(H2) *H2 = Matrix::Identity(v2.size(),v2.size());
108 
109  return hx;
110  }
111 
112 private:
113 
116  template<class ARCHIVE>
117  void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
118  ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
119  ar & BOOST_SERIALIZATION_NVP(dt_);
120  ar & BOOST_SERIALIZATION_NVP(tau_);
121  }
122 
124  /* Q_d (approx)= Q * delta_t */
125  /* In practice, square root of the information matrix is represented, so that:
126  * R_d (approx)= R / sqrt(delta_t)
127  * */
128  noiseModel::Gaussian::shared_ptr gaussian_model = boost::dynamic_pointer_cast<noiseModel::Gaussian>(model);
129  SharedGaussian model_d(noiseModel::Gaussian::SqrtInformation(gaussian_model->R()/sqrt(delta_t)));
130  return model_d;
131  }
132 
133 }; // \class GaussMarkov1stOrderFactor
134 
136 template<class VALUE> struct traits<GaussMarkov1stOrderFactor<VALUE> > :
137  public Testable<GaussMarkov1stOrderFactor<VALUE> > {
138 };
139 
140 }
bool equals(const NonlinearFactor &f, double tol=1e-9) const override
Vector v2
Concept check for values that can be used in unit tests.
Vector v1
Vector3f p1
EIGEN_DEVICE_FUNC const ExpReturnType exp() const
noiseModel::Diagonal::shared_ptr model
Matrix expected
Definition: testMatrix.cpp:974
friend class boost::serialization::access
A factor with a quadratic error function - a Gaussian.
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
NoiseModelFactor2< VALUE, VALUE > Base
SharedGaussian calcDiscreteNoiseModel(const SharedGaussian &model, double delta_t)
static const KeyFormatter DefaultKeyFormatter
Definition: Key.h:43
void print(const std::string &s, const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
Vector evaluateError(const VALUE &p1, const VALUE &p2, boost::optional< Matrix & > H1=boost::none, boost::optional< Matrix & > H2=boost::none) const override
Eigen::VectorXd Vector
Definition: Vector.h:38
GaussMarkov1stOrderFactor< VALUE > This
bool equals(const NonlinearFactor &expected, double tol=1e-9) const override
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Definition: Key.h:35
RealScalar alpha
Array< double, 1, 3 > e(1./3., 0.5, 2.)
RealScalar s
Base class and basic functions for Lie types.
traits
Definition: chartTesting.h:28
void serialize(ARCHIVE &ar, const unsigned int)
SharedNoiseModel noiseModel_
Non-linear factor base classes.
GaussMarkov1stOrderFactor(const Key &key1, const Key &key2, double delta_t, Vector tau, const SharedGaussian &model)
boost::shared_ptr< GaussMarkov1stOrderFactor > shared_ptr
boost::shared_ptr< Gaussian > shared_ptr
Definition: NoiseModel.h:189
static Point3 p2
const G double tol
Definition: Group.h:83
static shared_ptr SqrtInformation(const Matrix &R, bool smart=true)
Definition: NoiseModel.cpp:85
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:61
noiseModel::Gaussian::shared_ptr SharedGaussian
Definition: NoiseModel.h:735


gtsam
Author(s):
autogenerated on Sat May 8 2021 02:42:05