59 template<
typename _MatrixType>
class FullPivLU 69 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
70 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
99 template<
typename InputType>
108 template<
typename InputType>
118 template<
typename InputType>
133 eigen_assert(m_isInitialized &&
"LU is not initialized.");
146 eigen_assert(m_isInitialized &&
"LU is not initialized.");
147 return m_nonzero_pivots;
161 eigen_assert(m_isInitialized &&
"LU is not initialized.");
171 eigen_assert(m_isInitialized &&
"LU is not initialized.");
191 eigen_assert(m_isInitialized &&
"LU is not initialized.");
215 image(
const MatrixType& originalMatrix)
const 217 eigen_assert(m_isInitialized &&
"LU is not initialized.");
241 template<
typename Rhs>
245 eigen_assert(m_isInitialized &&
"LU is not initialized.");
254 eigen_assert(m_isInitialized &&
"PartialPivLU is not initialized.");
294 m_usePrescribedThreshold =
true;
295 m_prescribedThreshold = threshold;
309 m_usePrescribedThreshold =
false;
319 eigen_assert(m_isInitialized || m_usePrescribedThreshold);
320 return m_usePrescribedThreshold ? m_prescribedThreshold
335 eigen_assert(m_isInitialized &&
"LU is not initialized.");
336 RealScalar premultiplied_threshold =
abs(m_maxpivot) * threshold();
338 for(
Index i = 0;
i < m_nonzero_pivots; ++
i)
339 result += (
abs(m_lu.coeff(
i,
i)) > premultiplied_threshold);
351 eigen_assert(m_isInitialized &&
"LU is not initialized.");
352 return cols() - rank();
364 eigen_assert(m_isInitialized &&
"LU is not initialized.");
365 return rank() ==
cols();
377 eigen_assert(m_isInitialized &&
"LU is not initialized.");
378 return rank() ==
rows();
389 eigen_assert(m_isInitialized &&
"LU is not initialized.");
390 return isInjective() && (m_lu.rows() == m_lu.cols());
402 eigen_assert(m_isInitialized &&
"LU is not initialized.");
403 eigen_assert(m_lu.rows() == m_lu.cols() &&
"You can't take the inverse of a non-square matrix!");
407 MatrixType reconstructedMatrix()
const;
409 EIGEN_DEVICE_FUNC
inline Index rows()
const {
return m_lu.rows(); }
410 EIGEN_DEVICE_FUNC
inline Index cols()
const {
return m_lu.cols(); }
412 #ifndef EIGEN_PARSED_BY_DOXYGEN 413 template<
typename RhsType,
typename DstType>
415 void _solve_impl(
const RhsType &rhs, DstType &dst)
const;
417 template<
bool Conjugate,
typename RhsType,
typename DstType>
419 void _solve_impl_transposed(
const RhsType &rhs, DstType &dst)
const;
429 void computeInPlace();
443 template<
typename MatrixType>
445 : m_isInitialized(false), m_usePrescribedThreshold(false)
449 template<
typename MatrixType>
461 template<
typename MatrixType>
462 template<
typename InputType>
475 template<
typename MatrixType>
476 template<
typename InputType>
489 template<
typename MatrixType>
507 Index number_of_transpositions = 0;
517 Index row_of_biggest_in_corner, col_of_biggest_in_corner;
519 typedef typename Scoring::result_type Score;
520 Score biggest_in_corner;
521 biggest_in_corner =
m_lu.bottomRightCorner(rows-k, cols-k)
522 .unaryExpr(Scoring())
523 .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
524 row_of_biggest_in_corner += k;
525 col_of_biggest_in_corner += k;
527 if(biggest_in_corner==Score(0))
548 if(k != row_of_biggest_in_corner) {
549 m_lu.row(k).swap(
m_lu.row(row_of_biggest_in_corner));
550 ++number_of_transpositions;
552 if(k != col_of_biggest_in_corner) {
553 m_lu.col(k).swap(
m_lu.col(col_of_biggest_in_corner));
554 ++number_of_transpositions;
561 m_lu.col(k).tail(rows-k-1) /=
m_lu.coeff(k,k);
563 m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -=
m_lu.col(k).tail(rows-k-1) *
m_lu.row(k).tail(cols-k-1);
570 for(
Index k = size-1; k >= 0; --k)
577 m_det_pq = (number_of_transpositions%2) ? -1 : 1;
582 template<
typename MatrixType>
586 eigen_assert(
m_lu.rows() ==
m_lu.cols() &&
"You can't take the determinant of a non-square matrix!");
593 template<
typename MatrixType>
602 .template triangularView<UnitLower>().toDenseMatrix()
603 *
m_lu.topRows(smalldim)
604 .template triangularView<Upper>().toDenseMatrix();
618 template<
typename _MatrixType>
625 MatrixType::MaxColsAtCompileTime,
626 MatrixType::MaxRowsAtCompileTime)
629 template<
typename Dest>
void evalTo(Dest& dst)
const 632 const Index cols = dec().matrixLU().cols(), dimker = cols -
rank();
659 RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
661 for(
Index i = 0;
i < dec().nonzeroPivots(); ++
i)
662 if(
abs(dec().
matrixLU().coeff(
i,
i)) > premultiplied_threshold)
671 MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
675 if(
i) m.row(
i).head(
i).setZero();
676 m.row(
i).tail(cols-
i) = dec().matrixLU().row(pivots.
coeff(
i)).
tail(cols-
i);
679 m.block(0, 0,
rank(),
rank()).template triangularView<StrictlyLower>().
setZero();
681 m.col(
i).swap(m.col(pivots.
coeff(
i)));
687 .template triangularView<Upper>().solveInPlace(
688 m.topRightCorner(rank(), dimker)
693 m.col(
i).swap(m.col(pivots.
coeff(
i)));
704 template<
typename _MatrixType>
711 MatrixType::MaxColsAtCompileTime,
712 MatrixType::MaxRowsAtCompileTime)
715 template<
typename Dest>
void evalTo(Dest& dst)
const 728 RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
730 for(
Index i = 0;
i < dec().nonzeroPivots(); ++
i)
731 if(
abs(dec().
matrixLU().coeff(
i,
i)) > premultiplied_threshold)
744 #ifndef EIGEN_PARSED_BY_DOXYGEN 745 template<
typename _MatrixType>
746 template<
typename RhsType,
typename DstType>
759 nonzero_pivots = this->
rank();
763 if(nonzero_pivots == 0)
769 typename RhsType::PlainObject
c(rhs.rows(), rhs.cols());
775 m_lu.topLeftCorner(smalldim,smalldim)
776 .template triangularView<UnitLower>()
777 .solveInPlace(c.topRows(smalldim));
782 m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
783 .template triangularView<Upper>()
784 .solveInPlace(c.topRows(nonzero_pivots));
787 for(
Index i = 0;
i < nonzero_pivots; ++
i)
793 template<
typename _MatrixType>
794 template<
bool Conjugate,
typename RhsType,
typename DstType>
809 nonzero_pivots = this->
rank();
813 if(nonzero_pivots == 0)
819 typename RhsType::PlainObject
c(rhs.rows(), rhs.cols());
826 m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
827 .template triangularView<Upper>()
829 .solveInPlace(c.topRows(nonzero_pivots));
831 m_lu.topLeftCorner(smalldim, smalldim)
832 .template triangularView<UnitLower>()
834 .solveInPlace(c.topRows(smalldim));
837 m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
838 .template triangularView<Upper>()
840 .solveInPlace(c.topRows(nonzero_pivots));
842 m_lu.topLeftCorner(smalldim, smalldim)
843 .template triangularView<UnitLower>()
845 .solveInPlace(c.topRows(smalldim));
862 template<
typename DstXprType,
typename MatrixType>
882 template<
typename Derived>
internal::plain_row_type< MatrixType, StorageIndex >::type IntRowVectorType
PermutationMatrix< ColsAtCompileTime, MaxColsAtCompileTime > PermutationQType
bool m_usePrescribedThreshold
#define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived)
SolverBase< FullPivLU > Base
FullPivLU< MatrixType > LuType
EIGEN_DEVICE_FUNC Index rows() const
m m block(1, 0, 2, 2)<< 4
internal::traits< FullPivLU< _MatrixType > >::Scalar Scalar
const internal::image_retval< FullPivLU > image(const MatrixType &originalMatrix) const
FullPivLU & setThreshold(const RealScalar &threshold)
RealScalar m_prescribedThreshold
internal::traits< MatrixType >::Scalar determinant() const
virtual EIGEN_DEVICE_FUNC Scalar & coeffRef(DenseIndex index)
EIGEN_DEVICE_FUNC SegmentReturnType tail(Index n)
This is the const version of tail(Index).
void determinant(const MatrixType &m)
EIGEN_DEVICE_FUNC const PermutationPType & permutationP() const
FullPivLU & compute(const EigenBase< InputType > &matrix)
Derived & applyTranspositionOnTheRight(Index i, Index j)
AdjointReturnType adjoint() const
Namespace containing all symbols from the Eigen library.
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Decomposition::RealScalar rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition &dec)
Reciprocal condition number estimator.
Eigen::Index Index
The interface type of indices.
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
RealScalar threshold() const
void evalTo(Dest &dst) const
virtual EIGEN_DEVICE_FUNC const Scalar coeff(DenseIndex index) const
Index nonzeroPivots() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar & coeffRef(Index rowId, Index colId)
EIGEN_DEVICE_FUNC Index rows() const
EIGEN_DEVICE_FUNC Index cols() const
Expression of the inverse of another expression.
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
bool isSurjective() const
IntRowVectorType m_colsTranspositions
FullPivLU & setThreshold(Default_t)
const PermutationQType & permutationQ() const
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op< typename DstXprType::Scalar, typename MatrixType::Scalar > &)
EIGEN_DEVICE_FUNC Index cols() const
static void check_template_parameters()
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
PermutationMatrix< RowsAtCompileTime, MaxRowsAtCompileTime > PermutationPType
NumTraits< Scalar >::Real RealScalar
SolverStorage StorageKind
MatrixType reconstructedMatrix() const
ConstTransposeReturnType transpose() const
InverseReturnType inverse() const
internal::plain_col_type< MatrixType, StorageIndex >::type IntColVectorType
#define EIGEN_MAKE_KERNEL_HELPERS(DecompositionType)
EIGEN_DEVICE_FUNC void _solve_impl(const RhsType &rhs, DstType &dst) const
LU decomposition of a matrix with complete pivoting, and related features.
bool isInvertible() const
const FullPivLU< PlainObject > fullPivLu() const
const IndicesType & indices() const
FullPivLU()
Default Constructor.
IntColVectorType m_rowsTranspositions
#define EIGEN_MAKE_IMAGE_HELPERS(DecompositionType)
internal::nested_eval< T, 1 >::type eval(const T &xpr)
const MatrixType & matrixLU() const
Inverse< LuType > SrcXprType
Pseudo expression representing a solving operation.
#define eigen_internal_assert(x)
void evalTo(Dest &dst) const
MatrixType::PlainObject PlainObject
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
The matrix class, also used for vectors and row-vectors.
const Inverse< FullPivLU > inverse() const
EIGEN_DEVICE_FUNC const XprTypeNestedCleaned & nestedExpression() const
A base class for matrix decomposition and solvers.
EIGEN_DEVICE_FUNC void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const
Index dimensionOfKernel() const
RealScalar maxPivot() const
EIGEN_DEVICE_FUNC Derived & derived()
Base class for all dense matrices, vectors, and expressions.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar & coeff(Index rowId, Index colId) const
EIGEN_DEVICE_FUNC Index size() const
const Solve< FullPivLU, Rhs > solve(const MatrixBase< Rhs > &b) const
const internal::kernel_retval< FullPivLU > kernel() const