10 #ifndef EIGEN_UMEYAMA_H 11 #define EIGEN_UMEYAMA_H 21 #ifndef EIGEN_PARSED_BY_DOXYGEN 31 template<
typename MatrixType,
typename OtherMatrixType>
93 template <
typename Derived,
typename OtherDerived>
100 typedef typename Derived::Index Index;
104 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
112 const Index m = src.rows();
113 const Index n = src.cols();
116 const RealScalar one_over_n = 1 /
static_cast<RealScalar
>(n);
119 const VectorType src_mean = src.
rowwise().sum() * one_over_n;
120 const VectorType dst_mean = dst.
rowwise().sum() * one_over_n;
123 const RowMajorMatrixType src_demean = src.
colwise() - src_mean;
124 const RowMajorMatrixType dst_demean = dst.
colwise() - dst_mean;
127 const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
130 const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
135 TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
138 VectorType
S = VectorType::Ones(m);
139 if (sigma.determinant()<0)
S(m-1) = -1;
145 if ( svd.
matrixU().determinant() * svd.
matrixV().determinant() > 0 ) {
146 Rt.block(0,0,m,m).noalias() = svd.
matrixU()*svd.
matrixV().transpose();
148 const Scalar s =
S(m-1);
S(m-1) = -1;
149 Rt.block(0,0,m,m).noalias() = svd.
matrixU() * S.asDiagonal() * svd.
matrixV().transpose();
153 Rt.block(0,0,m,m).noalias() = svd.
matrixU() * S.asDiagonal() * svd.
matrixV().transpose();
162 Rt.col(m).head(m) = dst_mean;
163 Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
164 Rt.block(0,0,m,m) *= c;
168 Rt.col(m).head(m) = dst_mean;
169 Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean;
177 #endif // EIGEN_UMEYAMA_H
iterative scaling algorithm to equilibrate rows and column norms in matrices
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
const SingularValuesType & singularValues() const
bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, typename NumTraits< Scalar >::Real precision=NumTraits< Scalar >::dummy_precision())
const unsigned int RowMajorBit
ConstColwiseReturnType colwise() const
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama(const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
Returns the transformation between two point sets.
#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a, b)
Two-sided Jacobi SVD decomposition of a rectangular matrix.
const MatrixUType & matrixU() const
ConstRowwiseReturnType rowwise() const
The matrix class, also used for vectors and row-vectors.
Base class for all dense matrices, vectors, and expressions.
const MatrixVType & matrixV() const