TriangularMatrixMatrix_MKL.h
Go to the documentation of this file.
1 /*
2  Copyright (c) 2011, Intel Corporation. All rights reserved.
3 
4  Redistribution and use in source and binary forms, with or without modification,
5  are permitted provided that the following conditions are met:
6 
7  * Redistributions of source code must retain the above copyright notice, this
8  list of conditions and the following disclaimer.
9  * Redistributions in binary form must reproduce the above copyright notice,
10  this list of conditions and the following disclaimer in the documentation
11  and/or other materials provided with the distribution.
12  * Neither the name of Intel Corporation nor the names of its contributors may
13  be used to endorse or promote products derived from this software without
14  specific prior written permission.
15 
16  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27  ********************************************************************************
28  * Content : Eigen bindings to Intel(R) MKL
29  * Triangular matrix * matrix product functionality based on ?TRMM.
30  ********************************************************************************
31 */
32 
33 #ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_MKL_H
34 #define EIGEN_TRIANGULAR_MATRIX_MATRIX_MKL_H
35 
36 namespace Eigen {
37 
38 namespace internal {
39 
40 
41 template <typename Scalar, typename Index,
42  int Mode, bool LhsIsTriangular,
43  int LhsStorageOrder, bool ConjugateLhs,
44  int RhsStorageOrder, bool ConjugateRhs,
45  int ResStorageOrder>
47  product_triangular_matrix_matrix<Scalar,Index,Mode,
48  LhsIsTriangular,LhsStorageOrder,ConjugateLhs,
49  RhsStorageOrder, ConjugateRhs, ResStorageOrder, BuiltIn> {};
50 
51 
52 // try to go to BLAS specialization
53 #define EIGEN_MKL_TRMM_SPECIALIZE(Scalar, LhsIsTriangular) \
54 template <typename Index, int Mode, \
55  int LhsStorageOrder, bool ConjugateLhs, \
56  int RhsStorageOrder, bool ConjugateRhs> \
57 struct product_triangular_matrix_matrix<Scalar,Index, Mode, LhsIsTriangular, \
58  LhsStorageOrder,ConjugateLhs, RhsStorageOrder,ConjugateRhs,ColMajor,Specialized> { \
59  static inline void run(Index _rows, Index _cols, Index _depth, const Scalar* _lhs, Index lhsStride,\
60  const Scalar* _rhs, Index rhsStride, Scalar* res, Index resStride, Scalar alpha, level3_blocking<Scalar,Scalar>& blocking) { \
61  product_triangular_matrix_matrix_trmm<Scalar,Index,Mode, \
62  LhsIsTriangular,LhsStorageOrder,ConjugateLhs, \
63  RhsStorageOrder, ConjugateRhs, ColMajor>::run( \
64  _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \
65  } \
66 };
67 
68 EIGEN_MKL_TRMM_SPECIALIZE(double, true)
69 EIGEN_MKL_TRMM_SPECIALIZE(double, false)
70 EIGEN_MKL_TRMM_SPECIALIZE(dcomplex, true)
71 EIGEN_MKL_TRMM_SPECIALIZE(dcomplex, false)
72 EIGEN_MKL_TRMM_SPECIALIZE(float, true)
73 EIGEN_MKL_TRMM_SPECIALIZE(float, false)
74 EIGEN_MKL_TRMM_SPECIALIZE(scomplex, true)
75 EIGEN_MKL_TRMM_SPECIALIZE(scomplex, false)
76 
77 // implements col-major += alpha * op(triangular) * op(general)
78 #define EIGEN_MKL_TRMM_L(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
79 template <typename Index, int Mode, \
80  int LhsStorageOrder, bool ConjugateLhs, \
81  int RhsStorageOrder, bool ConjugateRhs> \
82 struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,true, \
83  LhsStorageOrder,ConjugateLhs,RhsStorageOrder,ConjugateRhs,ColMajor> \
84 { \
85  enum { \
86  IsLower = (Mode&Lower) == Lower, \
87  SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
88  IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
89  IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
90  LowUp = IsLower ? Lower : Upper, \
91  conjA = ((LhsStorageOrder==ColMajor) && ConjugateLhs) ? 1 : 0 \
92  }; \
93 \
94  static void run( \
95  Index _rows, Index _cols, Index _depth, \
96  const EIGTYPE* _lhs, Index lhsStride, \
97  const EIGTYPE* _rhs, Index rhsStride, \
98  EIGTYPE* res, Index resStride, \
99  EIGTYPE alpha, level3_blocking<EIGTYPE,EIGTYPE>& blocking) \
100  { \
101  Index diagSize = (std::min)(_rows,_depth); \
102  Index rows = IsLower ? _rows : diagSize; \
103  Index depth = IsLower ? diagSize : _depth; \
104  Index cols = _cols; \
105 \
106  typedef Matrix<EIGTYPE, Dynamic, Dynamic, LhsStorageOrder> MatrixLhs; \
107  typedef Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> MatrixRhs; \
108 \
109 /* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
110  if (rows != depth) { \
111 \
112  int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
113 \
114  if (((nthr==1) && (((std::max)(rows,depth)-diagSize)/(double)diagSize < 0.5))) { \
115  /* Most likely no benefit to call TRMM or GEMM from MKL*/ \
116  product_triangular_matrix_matrix<EIGTYPE,Index,Mode,true, \
117  LhsStorageOrder,ConjugateLhs, RhsStorageOrder, ConjugateRhs, ColMajor, BuiltIn>::run( \
118  _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \
119  /*std::cout << "TRMM_L: A is not square! Go to Eigen TRMM implementation!\n";*/ \
120  } else { \
121  /* Make sense to call GEMM */ \
122  Map<const MatrixLhs, 0, OuterStride<> > lhsMap(_lhs,rows,depth,OuterStride<>(lhsStride)); \
123  MatrixLhs aa_tmp=lhsMap.template triangularView<Mode>(); \
124  MKL_INT aStride = aa_tmp.outerStride(); \
125  gemm_blocking_space<ColMajor,EIGTYPE,EIGTYPE,Dynamic,Dynamic,Dynamic> gemm_blocking(_rows,_cols,_depth); \
126  general_matrix_matrix_product<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,RhsStorageOrder,ConjugateRhs,ColMajor>::run( \
127  rows, cols, depth, aa_tmp.data(), aStride, _rhs, rhsStride, res, resStride, alpha, gemm_blocking, 0); \
128 \
129  /*std::cout << "TRMM_L: A is not square! Go to MKL GEMM implementation! " << nthr<<" \n";*/ \
130  } \
131  return; \
132  } \
133  char side = 'L', transa, uplo, diag = 'N'; \
134  EIGTYPE *b; \
135  const EIGTYPE *a; \
136  MKL_INT m, n, lda, ldb; \
137  MKLTYPE alpha_; \
138 \
139 /* Set alpha_*/ \
140  assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
141 \
142 /* Set m, n */ \
143  m = (MKL_INT)diagSize; \
144  n = (MKL_INT)cols; \
145 \
146 /* Set trans */ \
147  transa = (LhsStorageOrder==RowMajor) ? ((ConjugateLhs) ? 'C' : 'T') : 'N'; \
148 \
149 /* Set b, ldb */ \
150  Map<const MatrixRhs, 0, OuterStride<> > rhs(_rhs,depth,cols,OuterStride<>(rhsStride)); \
151  MatrixX##EIGPREFIX b_tmp; \
152 \
153  if (ConjugateRhs) b_tmp = rhs.conjugate(); else b_tmp = rhs; \
154  b = b_tmp.data(); \
155  ldb = b_tmp.outerStride(); \
156 \
157 /* Set uplo */ \
158  uplo = IsLower ? 'L' : 'U'; \
159  if (LhsStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \
160 /* Set a, lda */ \
161  Map<const MatrixLhs, 0, OuterStride<> > lhs(_lhs,rows,depth,OuterStride<>(lhsStride)); \
162  MatrixLhs a_tmp; \
163 \
164  if ((conjA!=0) || (SetDiag==0)) { \
165  if (conjA) a_tmp = lhs.conjugate(); else a_tmp = lhs; \
166  if (IsZeroDiag) \
167  a_tmp.diagonal().setZero(); \
168  else if (IsUnitDiag) \
169  a_tmp.diagonal().setOnes();\
170  a = a_tmp.data(); \
171  lda = a_tmp.outerStride(); \
172  } else { \
173  a = _lhs; \
174  lda = lhsStride; \
175  } \
176  /*std::cout << "TRMM_L: A is square! Go to MKL TRMM implementation! \n";*/ \
177 /* call ?trmm*/ \
178  MKLPREFIX##trmm(&side, &uplo, &transa, &diag, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (MKLTYPE*)b, &ldb); \
179 \
180 /* Add op(a_triangular)*b into res*/ \
181  Map<MatrixX##EIGPREFIX, 0, OuterStride<> > res_tmp(res,rows,cols,OuterStride<>(resStride)); \
182  res_tmp=res_tmp+b_tmp; \
183  } \
184 };
185 
186 EIGEN_MKL_TRMM_L(double, double, d, d)
187 EIGEN_MKL_TRMM_L(dcomplex, MKL_Complex16, cd, z)
188 EIGEN_MKL_TRMM_L(float, float, f, s)
189 EIGEN_MKL_TRMM_L(scomplex, MKL_Complex8, cf, c)
190 
191 // implements col-major += alpha * op(general) * op(triangular)
192 #define EIGEN_MKL_TRMM_R(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX) \
193 template <typename Index, int Mode, \
194  int LhsStorageOrder, bool ConjugateLhs, \
195  int RhsStorageOrder, bool ConjugateRhs> \
196 struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,false, \
197  LhsStorageOrder,ConjugateLhs,RhsStorageOrder,ConjugateRhs,ColMajor> \
198 { \
199  enum { \
200  IsLower = (Mode&Lower) == Lower, \
201  SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \
202  IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \
203  IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \
204  LowUp = IsLower ? Lower : Upper, \
205  conjA = ((RhsStorageOrder==ColMajor) && ConjugateRhs) ? 1 : 0 \
206  }; \
207 \
208  static void run( \
209  Index _rows, Index _cols, Index _depth, \
210  const EIGTYPE* _lhs, Index lhsStride, \
211  const EIGTYPE* _rhs, Index rhsStride, \
212  EIGTYPE* res, Index resStride, \
213  EIGTYPE alpha, level3_blocking<EIGTYPE,EIGTYPE>& blocking) \
214  { \
215  Index diagSize = (std::min)(_cols,_depth); \
216  Index rows = _rows; \
217  Index depth = IsLower ? _depth : diagSize; \
218  Index cols = IsLower ? diagSize : _cols; \
219 \
220  typedef Matrix<EIGTYPE, Dynamic, Dynamic, LhsStorageOrder> MatrixLhs; \
221  typedef Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> MatrixRhs; \
222 \
223 /* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
224  if (cols != depth) { \
225 \
226  int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
227 \
228  if ((nthr==1) && (((std::max)(cols,depth)-diagSize)/(double)diagSize < 0.5)) { \
229  /* Most likely no benefit to call TRMM or GEMM from MKL*/ \
230  product_triangular_matrix_matrix<EIGTYPE,Index,Mode,false, \
231  LhsStorageOrder,ConjugateLhs, RhsStorageOrder, ConjugateRhs, ColMajor, BuiltIn>::run( \
232  _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \
233  /*std::cout << "TRMM_R: A is not square! Go to Eigen TRMM implementation!\n";*/ \
234  } else { \
235  /* Make sense to call GEMM */ \
236  Map<const MatrixRhs, 0, OuterStride<> > rhsMap(_rhs,depth,cols, OuterStride<>(rhsStride)); \
237  MatrixRhs aa_tmp=rhsMap.template triangularView<Mode>(); \
238  MKL_INT aStride = aa_tmp.outerStride(); \
239  gemm_blocking_space<ColMajor,EIGTYPE,EIGTYPE,Dynamic,Dynamic,Dynamic> gemm_blocking(_rows,_cols,_depth); \
240  general_matrix_matrix_product<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,RhsStorageOrder,ConjugateRhs,ColMajor>::run( \
241  rows, cols, depth, _lhs, lhsStride, aa_tmp.data(), aStride, res, resStride, alpha, gemm_blocking, 0); \
242 \
243  /*std::cout << "TRMM_R: A is not square! Go to MKL GEMM implementation! " << nthr<<" \n";*/ \
244  } \
245  return; \
246  } \
247  char side = 'R', transa, uplo, diag = 'N'; \
248  EIGTYPE *b; \
249  const EIGTYPE *a; \
250  MKL_INT m, n, lda, ldb; \
251  MKLTYPE alpha_; \
252 \
253 /* Set alpha_*/ \
254  assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
255 \
256 /* Set m, n */ \
257  m = (MKL_INT)rows; \
258  n = (MKL_INT)diagSize; \
259 \
260 /* Set trans */ \
261  transa = (RhsStorageOrder==RowMajor) ? ((ConjugateRhs) ? 'C' : 'T') : 'N'; \
262 \
263 /* Set b, ldb */ \
264  Map<const MatrixLhs, 0, OuterStride<> > lhs(_lhs,rows,depth,OuterStride<>(lhsStride)); \
265  MatrixX##EIGPREFIX b_tmp; \
266 \
267  if (ConjugateLhs) b_tmp = lhs.conjugate(); else b_tmp = lhs; \
268  b = b_tmp.data(); \
269  ldb = b_tmp.outerStride(); \
270 \
271 /* Set uplo */ \
272  uplo = IsLower ? 'L' : 'U'; \
273  if (RhsStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \
274 /* Set a, lda */ \
275  Map<const MatrixRhs, 0, OuterStride<> > rhs(_rhs,depth,cols, OuterStride<>(rhsStride)); \
276  MatrixRhs a_tmp; \
277 \
278  if ((conjA!=0) || (SetDiag==0)) { \
279  if (conjA) a_tmp = rhs.conjugate(); else a_tmp = rhs; \
280  if (IsZeroDiag) \
281  a_tmp.diagonal().setZero(); \
282  else if (IsUnitDiag) \
283  a_tmp.diagonal().setOnes();\
284  a = a_tmp.data(); \
285  lda = a_tmp.outerStride(); \
286  } else { \
287  a = _rhs; \
288  lda = rhsStride; \
289  } \
290  /*std::cout << "TRMM_R: A is square! Go to MKL TRMM implementation! \n";*/ \
291 /* call ?trmm*/ \
292  MKLPREFIX##trmm(&side, &uplo, &transa, &diag, &m, &n, &alpha_, (const MKLTYPE*)a, &lda, (MKLTYPE*)b, &ldb); \
293 \
294 /* Add op(a_triangular)*b into res*/ \
295  Map<MatrixX##EIGPREFIX, 0, OuterStride<> > res_tmp(res,rows,cols,OuterStride<>(resStride)); \
296  res_tmp=res_tmp+b_tmp; \
297  } \
298 };
299 
300 EIGEN_MKL_TRMM_R(double, double, d, d)
301 EIGEN_MKL_TRMM_R(dcomplex, MKL_Complex16, cd, z)
302 EIGEN_MKL_TRMM_R(float, float, f, s)
303 EIGEN_MKL_TRMM_R(scomplex, MKL_Complex8, cf, c)
304 
305 } // end namespace internal
306 
307 } // end namespace Eigen
308 
309 #endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_MKL_H
#define EIGEN_MKL_TRMM_SPECIALIZE(Scalar, LhsIsTriangular)
iterative scaling algorithm to equilibrate rows and column norms in matrices
Definition: matrix.hpp:471
#define EIGEN_MKL_TRMM_R(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX)
#define EIGEN_MKL_TRMM_L(EIGTYPE, MKLTYPE, EIGPREFIX, MKLPREFIX)


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:35:14