SolveTriangular.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SOLVETRIANGULAR_H
11 #define EIGEN_SOLVETRIANGULAR_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // Forward declarations:
18 // The following two routines are implemented in the products/TriangularSolver*.h files
19 template<typename LhsScalar, typename RhsScalar, typename Index, int Side, int Mode, bool Conjugate, int StorageOrder>
21 
22 template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder, int OtherStorageOrder>
24 
25 // small helper struct extracting some traits on the underlying solver operation
26 template<typename Lhs, typename Rhs, int Side>
28 {
29  private:
30  enum {
31  RhsIsVectorAtCompileTime = (Side==OnTheLeft ? Rhs::ColsAtCompileTime : Rhs::RowsAtCompileTime)==1
32  };
33  public:
34  enum {
35  Unrolling = (RhsIsVectorAtCompileTime && Rhs::SizeAtCompileTime != Dynamic && Rhs::SizeAtCompileTime <= 8)
38  };
39 };
40 
41 template<typename Lhs, typename Rhs,
42  int Side, // can be OnTheLeft/OnTheRight
43  int Mode, // can be Upper/Lower | UnitDiag
46  >
48 
49 template<typename Lhs, typename Rhs, int Side, int Mode>
50 struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,1>
51 {
52  typedef typename Lhs::Scalar LhsScalar;
53  typedef typename Rhs::Scalar RhsScalar;
57  static void run(const Lhs& lhs, Rhs& rhs)
58  {
59  ActualLhsType actualLhs = LhsProductTraits::extract(lhs);
60 
61  // FIXME find a way to allow an inner stride if packet_traits<Scalar>::size==1
62 
63  bool useRhsDirectly = Rhs::InnerStrideAtCompileTime==1 || rhs.innerStride()==1;
64 
65  ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhs,rhs.size(),
66  (useRhsDirectly ? rhs.data() : 0));
67 
68  if(!useRhsDirectly)
69  MappedRhs(actualRhs,rhs.size()) = rhs;
70 
71  triangular_solve_vector<LhsScalar, RhsScalar, typename Lhs::Index, Side, Mode, LhsProductTraits::NeedToConjugate,
72  (int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor>
73  ::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs);
74 
75  if(!useRhsDirectly)
76  rhs = MappedRhs(actualRhs, rhs.size());
77  }
78 };
79 
80 // the rhs is a matrix
81 template<typename Lhs, typename Rhs, int Side, int Mode>
83 {
84  typedef typename Rhs::Scalar Scalar;
85  typedef typename Rhs::Index Index;
88 
89  static void run(const Lhs& lhs, Rhs& rhs)
90  {
91  typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsProductTraits::extract(lhs);
92 
93  const Index size = lhs.rows();
94  const Index othersize = Side==OnTheLeft? rhs.cols() : rhs.rows();
95 
96  typedef internal::gemm_blocking_space<(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
97  Rhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxRowsAtCompileTime,4> BlockingType;
98 
99  BlockingType blocking(rhs.rows(), rhs.cols(), size);
100 
101  triangular_solve_matrix<Scalar,Index,Side,Mode,LhsProductTraits::NeedToConjugate,(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor,
102  (Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor>
103  ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.outerStride(), blocking);
104  }
105 };
106 
107 /***************************************************************************
108 * meta-unrolling implementation
109 ***************************************************************************/
110 
111 template<typename Lhs, typename Rhs, int Mode, int Index, int Size,
112  bool Stop = Index==Size>
114 
115 template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
116 struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,false> {
117  enum {
118  IsLower = ((Mode&Lower)==Lower),
119  I = IsLower ? Index : Size - Index - 1,
120  S = IsLower ? 0 : I+1
121  };
122  static void run(const Lhs& lhs, Rhs& rhs)
123  {
124  if (Index>0)
125  rhs.coeffRef(I) -= lhs.row(I).template segment<Index>(S).transpose()
126  .cwiseProduct(rhs.template segment<Index>(S)).sum();
127 
128  if(!(Mode & UnitDiag))
129  rhs.coeffRef(I) /= lhs.coeff(I,I);
130 
132  }
133 };
134 
135 template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
136 struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,true> {
137  static void run(const Lhs&, Rhs&) {}
138 };
139 
140 template<typename Lhs, typename Rhs, int Mode>
142  static void run(const Lhs& lhs, Rhs& rhs)
144 };
145 
146 template<typename Lhs, typename Rhs, int Mode>
148  static void run(const Lhs& lhs, Rhs& rhs)
149  {
150  Transpose<const Lhs> trLhs(lhs);
151  Transpose<Rhs> trRhs(rhs);
152 
154  ((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
155  0,Rhs::SizeAtCompileTime>::run(trLhs,trRhs);
156  }
157 };
158 
159 } // end namespace internal
160 
161 /***************************************************************************
162 * TriangularView methods
163 ***************************************************************************/
164 
172 template<typename MatrixType, unsigned int Mode>
173 template<int Side, typename OtherDerived>
175 {
176  OtherDerived& other = _other.const_cast_derived();
177  eigen_assert( cols() == rows() && ((Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols())) );
178  eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
179 
180  enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit && OtherDerived::IsVectorAtCompileTime };
181  typedef typename internal::conditional<copy,
182  typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
183  OtherCopy otherCopy(other);
184 
186  Side, Mode>::run(nestedExpression(), otherCopy);
187 
188  if (copy)
189  other = otherCopy;
190 }
191 
213 template<typename Derived, unsigned int Mode>
214 template<int Side, typename Other>
217 {
219 }
220 
221 namespace internal {
222 
223 
224 template<int Side, typename TriangularType, typename Rhs>
225 struct traits<triangular_solve_retval<Side, TriangularType, Rhs> >
226 {
228 };
229 
230 template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval
231  : public ReturnByValue<triangular_solve_retval<Side, TriangularType, Rhs> >
232 {
235  typedef typename Base::Index Index;
236 
237  triangular_solve_retval(const TriangularType& tri, const Rhs& rhs)
238  : m_triangularMatrix(tri), m_rhs(rhs)
239  {}
240 
241  inline Index rows() const { return m_rhs.rows(); }
242  inline Index cols() const { return m_rhs.cols(); }
243 
244  template<typename Dest> inline void evalTo(Dest& dst) const
245  {
247  dst = m_rhs;
248  m_triangularMatrix.template solveInPlace<Side>(dst);
249  }
250 
251  protected:
252  const TriangularType& m_triangularMatrix;
253  typename Rhs::Nested m_rhs;
254 };
255 
256 } // namespace internal
257 
258 } // end namespace Eigen
259 
260 #endif // EIGEN_SOLVETRIANGULAR_H
const internal::triangular_solve_retval< Side, TriangularView, Other > solve(const MatrixBase< Other > &other) const
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:104
Expression of the transpose of a matrix.
Definition: Transpose.h:57
iterative scaling algorithm to equilibrate rows and column norms in matrices
Definition: matrix.hpp:471
const unsigned int RowMajorBit
ReturnByValue< triangular_solve_retval > Base
triangular_solve_retval(const TriangularType &tri, const Rhs &rhs)
void rhs(const real_t *x, real_t *f)
remove_all< typename Rhs::Nested >::type RhsNestedCleaned
void solveInPlace(const MatrixBase< OtherDerived > &other) const
const T::Scalar * extract_data(const T &m)
Definition: BlasUtil.h:255
internal::plain_matrix_type_column_major< Rhs >::type ReturnType
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127
#define eigen_assert(x)
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
const XprType & ExtractType
Definition: BlasUtil.h:154


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:35:07