9 #ifndef METIS_SUPPORT_H 10 #define METIS_SUPPORT_H 21 template <
typename Index>
28 template <
typename MatrixType>
32 eigen_assert((A.rows() == A.cols()) &&
"ONLY FOR SQUARED MATRICES");
34 MatrixType At = A.transpose();
37 IndexVector visited(m);
39 for (
int j = 0; j < m; j++)
44 for (
typename MatrixType::InnerIterator it(A, j); it; ++it)
46 Index idx = it.index();
47 if (visited(idx) != j )
54 for (
typename MatrixType::InnerIterator it(At, j); it; ++it)
56 Index idx = it.index();
71 for (
int j = 0; j < m; j++)
77 for (
typename MatrixType::InnerIterator it(A,j); it; ++it)
79 Index idx = it.index();
80 if (visited(idx) != j )
88 for (
typename MatrixType::InnerIterator it(At, j); it; ++it)
90 Index idx = it.index();
102 template <
typename MatrixType>
106 IndexVector perm(m),iperm(m);
114 if(output_error != METIS_OK)
117 std::cerr <<
"ERROR WHILE CALLING THE METIS PACKAGE \n";
126 for (
int j = 0; j < m; j++)
127 matperm.
indices()(iperm(j)) = j;
iterative scaling algorithm to equilibrate rows and column norms in matrices
void get_symmetrized_graph(const MatrixType &A)
EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols)
PermutationMatrix< Dynamic, Dynamic, Index > PermutationType
Derived & setConstant(Index size, const Scalar &value)
EIGEN_STRONG_INLINE const Scalar * data() const
Matrix< Index, Dynamic, 1 > IndexVector
const IndicesType & indices() const
IndexVector m_innerIndices
void operator()(const MatrixType &A, PermutationType &matperm)
void resize(Index newSize)