00001 /****************************************************************************** 00002 Copyright (c) 2018, Alexander W. Winkler. All rights reserved. 00003 00004 Redistribution and use in source and binary forms, with or without 00005 modification, are permitted provided that the following conditions are met: 00006 00007 * Redistributions of source code must retain the above copyright notice, this 00008 list of conditions and the following disclaimer. 00009 00010 * Redistributions in binary form must reproduce the above copyright notice, 00011 this list of conditions and the following disclaimer in the documentation 00012 and/or other materials provided with the distribution. 00013 00014 * Neither the name of the copyright holder nor the names of its 00015 contributors may be used to endorse or promote products derived from 00016 this software without specific prior written permission. 00017 00018 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00019 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00020 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 00021 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 00022 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 00023 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 00024 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00025 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 00026 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 00027 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00028 ******************************************************************************/ 00029 00030 #include <cmath> 00031 #include <iostream> 00032 00033 #include <towr/terrain/examples/height_map_examples.h> 00034 #include <towr/nlp_formulation.h> 00035 #include <ifopt/ipopt_solver.h> 00036 00037 00038 using namespace towr; 00039 00040 // A minimal example how to build a trajectory optimization problem using TOWR. 00041 // 00042 // The more advanced example that includes ROS integration, GUI, rviz 00043 // visualization and plotting can be found here: 00044 // towr_ros/src/towr_ros_app.cc 00045 int main() 00046 { 00047 NlpFormulation formulation; 00048 00049 // terrain 00050 formulation.terrain_ = std::make_shared<FlatGround>(0.0); 00051 00052 // Kinematic limits and dynamic parameters of the hopper 00053 formulation.model_ = RobotModel(RobotModel::Monoped); 00054 00055 // set the initial position of the hopper 00056 formulation.initial_base_.lin.at(kPos).z() = 0.5; 00057 formulation.initial_ee_W_.push_back(Eigen::Vector3d::Zero()); 00058 00059 // define the desired goal state of the hopper 00060 formulation.final_base_.lin.at(towr::kPos) << 1.0, 0.0, 0.5; 00061 00062 // Parameters that define the motion. See c'tor for default values or 00063 // other values that can be modified. 00064 // First we define the initial phase durations, that can however be changed 00065 // by the optimizer. The number of swing and stance phases however is fixed. 00066 // alternating stance and swing: ____-----_____-----_____-----_____ 00067 formulation.params_.ee_phase_durations_.push_back({0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.2}); 00068 formulation.params_.ee_in_contact_at_start_.push_back(true); 00069 00070 // Initialize the nonlinear-programming problem with the variables, 00071 // constraints and costs. 00072 ifopt::Problem nlp; 00073 SplineHolder solution; 00074 for (auto c : formulation.GetVariableSets(solution)) 00075 nlp.AddVariableSet(c); 00076 for (auto c : formulation.GetConstraints(solution)) 00077 nlp.AddConstraintSet(c); 00078 for (auto c : formulation.GetCosts()) 00079 nlp.AddCostSet(c); 00080 00081 // You can add your own elements to the nlp as well, simply by calling: 00082 // nlp.AddVariablesSet(your_custom_variables); 00083 // nlp.AddConstraintSet(your_custom_constraints); 00084 00085 // Choose ifopt solver (IPOPT or SNOPT), set some parameters and solve. 00086 // solver->SetOption("derivative_test", "first-order"); 00087 auto solver = std::make_shared<ifopt::IpoptSolver>(); 00088 solver->SetOption("jacobian_approximation", "exact"); // "finite difference-values" 00089 solver->SetOption("max_cpu_time", 20.0); 00090 solver->Solve(nlp); 00091 00092 // Can directly view the optimization variables through: 00093 // Eigen::VectorXd x = nlp.GetVariableValues() 00094 // However, it's more convenient to access the splines constructed from these 00095 // variables and query their values at specific times: 00096 using namespace std; 00097 cout.precision(2); 00098 nlp.PrintCurrent(); // view variable-set, constraint violations, indices,... 00099 cout << fixed; 00100 cout << "\n====================\nMonoped trajectory:\n====================\n"; 00101 00102 double t = 0.0; 00103 while (t<=solution.base_linear_->GetTotalTime() + 1e-5) { 00104 cout << "t=" << t << "\n"; 00105 cout << "Base linear position x,y,z: \t"; 00106 cout << solution.base_linear_->GetPoint(t).p().transpose() << "\t[m]" << endl; 00107 00108 cout << "Base Euler roll, pitch, yaw: \t"; 00109 Eigen::Vector3d rad = solution.base_angular_->GetPoint(t).p(); 00110 cout << (rad/M_PI*180).transpose() << "\t[deg]" << endl; 00111 00112 cout << "Foot position x,y,z: \t"; 00113 cout << solution.ee_motion_.at(0)->GetPoint(t).p().transpose() << "\t[m]" << endl; 00114 00115 cout << "Contact force x,y,z: \t"; 00116 cout << solution.ee_force_.at(0)->GetPoint(t).p().transpose() << "\t[N]" << endl; 00117 00118 bool contact = solution.phase_durations_.at(0)->IsContactPhase(t); 00119 std::string foot_in_contact = contact? "yes" : "no"; 00120 cout << "Foot in contact: \t" + foot_in_contact << endl; 00121 00122 cout << endl; 00123 00124 t += 0.2; 00125 } 00126 }