00001 #ifndef VORONOI_ATLAS_H
00002 #define VORONOI_ATLAS_H
00003
00004 #include<vcg/complex/algorithms/parametrization/poisson_solver.h>
00005 #include<vcg/complex/algorithms/parametrization/uv_utils.h>
00006 #include<vcg/complex/algorithms/parametrization/distortion.h>
00007 #include<vcg/space/outline2_packer.h>
00008 #include<vcg/space/rasterized_outline2_packer.h>
00009 #include<vcg/complex/algorithms/update/texture.h>
00010 #include<vcg/complex/algorithms/point_sampling.h>
00011 #include<vcg/complex/algorithms/voronoi_processing.h>
00012
00013
00014
00015 namespace vcg {
00016 namespace tri {
00017
00018 template <class MeshType>
00019 class VoronoiAtlas
00020 {
00021
00022 public:
00023 class VoroEdge;
00024 class VoroFace;
00025 class VoroVertex;
00026 struct VoroUsedTypes : public UsedTypes< Use<VoroVertex> ::template AsVertexType,
00027 Use<VoroEdge> ::template AsEdgeType,
00028 Use<VoroFace> ::template AsFaceType>{};
00029
00030 class VoroVertex : public Vertex< VoroUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::TexCoord2f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
00031 class VoroFace : public Face< VoroUsedTypes, face::VertexRef, face::BitFlags, face::FFAdj ,face::VFAdj , face::CurvatureDirf,face::WedgeTexCoord2f> {};
00032 class VoroEdge : public Edge< VoroUsedTypes>{};
00033 class VoroMesh : public tri::TriMesh< std::vector<VoroVertex>, std::vector<VoroFace> , std::vector<VoroEdge> > {};
00034
00035 typedef typename VoroMesh::FaceIterator FaceIterator;
00036 typedef typename VoroMesh::VertexType VertexType;
00037 typedef typename VoroMesh::FaceType FaceType;
00038
00039 static void CollectUVBorder(VoroMesh *rm, std::vector<Point2f> &uvBorder)
00040 {
00041 tri::UpdateTopology<VoroMesh>::FaceFace(*rm);
00042 tri::UpdateFlags<VoroMesh>::FaceClearV(*rm);
00043 for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
00044 {
00045 for(int j=0;j<3;++j)
00046 if(face::IsBorder(*fi,j) && !(fi->IsV()))
00047 {
00048 face::Pos<FaceType> pp(&*fi,j,fi->V(j));
00049 assert(pp.IsBorder());
00050 face::Pos<FaceType> startPos = pp;
00051 do
00052 {
00053 uvBorder.push_back( pp.F()->WT(pp.VInd()).P() );
00054 pp.F()->SetV();
00055 pp.NextB();
00056 } while(pp != startPos);
00057 }
00058 }
00059 }
00060
00061
00062 static void RegularizeTexArea(VoroMesh &m)
00063 {
00064 float areaTex=0;
00065 float areaGeo=0;
00066
00067 vcg::Box2f UVBox = tri::UV_Utils<VoroMesh>::PerWedgeUVBox(m);
00068 for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
00069 {
00070 areaTex+= fabs((fi->WT(1).P() - fi->WT(0).P()) ^ (fi->WT(2).P() - fi->WT(0).P())) ;
00071 areaGeo+= DoubleArea(*fi);
00072 }
00073
00074 float ratio = sqrt(areaGeo/areaTex);
00075
00076 for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
00077 {
00078 for(int j=0;j<3;++j)
00079 fi->WT(j).P() = (fi->WT(j).P()-UVBox.min) *ratio;
00080 }
00081 }
00082
00083
00084 public:
00085 struct VoronoiAtlasParam
00086 {
00087 VoronoiAtlasParam()
00088 {
00089 maxIterNum = 5;
00090 sampleNum=10;
00091 overlap=false;
00092 }
00093
00094 struct Stat
00095 {
00096 void clear() { iterNum=totalTime=unwrapTime=voronoiTime=samplingTime=0;}
00097 int totalTime;
00098 int unwrapTime;
00099 int voronoiTime;
00100 int samplingTime;
00101
00102 int regionNum;
00103 int iterNum;
00104 };
00105
00106 int sampleNum;
00107 bool overlap;
00108 Stat vas;
00109 int maxIterNum;
00110 };
00111
00112
00113
00114
00115
00116 static void Build( MeshType &startMesh, MeshType ¶Mesh, VoronoiAtlasParam &pp)
00117 {
00118 pp.vas.clear();
00119 int t0=clock();
00120 VoroMesh m;
00121 tri::Append<VoroMesh, MeshType>::Mesh(m, startMesh);
00122 tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
00123 tri::Allocator<VoroMesh>::CompactVertexVector(m);
00124 tri::Allocator<VoroMesh>::CompactFaceVector(m);
00125
00126 tri::UpdateBounding<VoroMesh>::Box(m);
00127 std::vector<VoroMesh *> meshRegionVec;
00128 std::vector< std::vector<Point2f> > uvBorders;
00129
00130
00131 do
00132 {
00133
00134 int st0=clock();
00135 std::vector<Point3f> PoissonSamples;
00136 float diskRadius=0;
00137 tri::PoissonSampling(m,PoissonSamples,pp.sampleNum,diskRadius);
00138 int st1=clock();
00139 pp.vas.samplingTime+= st1-st0;
00140
00141 EuclideanDistance<VoroMesh> edFunc;
00142 std::vector<VertexType *> seedVec;
00143 tri::VoronoiProcessing<VoroMesh>::SeedToVertexConversion(m,PoissonSamples,seedVec);
00144 tri::UpdateTopology<VoroMesh>::VertexFace(m);
00145 tri::VoronoiProcessing<VoroMesh>::ComputePerVertexSources(m,seedVec,edFunc);
00146 tri::VoronoiProcessing<VoroMesh>::FaceAssociateRegion(m);
00147 tri::VoronoiProcessing<VoroMesh>::VoronoiColoring(m,true);
00148 std::vector<VoroMesh *> badRegionVec;
00149 int st2=clock();
00150 pp.vas.voronoiTime+=st2-st1;
00151 for(size_t i=0; i<seedVec.size();++i)
00152 {
00153 VoroMesh *rm = new VoroMesh();
00154 int selCnt = tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,seedVec[i]);
00155
00156 if(selCnt==0) continue;
00157 assert(selCnt>0);
00158 if(pp.overlap){
00159 tri::UpdateSelection<VoroMesh>::VertexFromFaceLoose(m);
00160 tri::UpdateSelection<VoroMesh>::FaceFromVertexLoose(m);
00161 }
00162 tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
00163 int tp0=clock();
00164 tri::PoissonSolver<VoroMesh> PS(*rm);
00165 if(PS.IsFeaseable())
00166 {
00167 PS.Init();
00168 PS.FixDefaultVertices();
00169 PS.SolvePoisson(false);
00170 tri::UpdateTexture<VoroMesh>::WedgeTexFromVertexTex(*rm);
00171 RegularizeTexArea(*rm);
00172
00173 std::vector<Point2f> uvBorder;
00174 CollectUVBorder(rm,uvBorder);
00175 meshRegionVec.push_back(rm);
00176 uvBorders.push_back(uvBorder);
00177 int foldedCnt = tri::Distortion<VoroMesh,false>::Folded(*rm);
00178 if( foldedCnt > rm->fn/10)
00179 {
00180 badRegionVec.push_back(rm);
00181
00182 }
00183
00184
00185 } else
00186 {
00187
00188 badRegionVec.push_back(rm);
00189 }
00190 int tp1=clock();
00191 pp.vas.unwrapTime +=tp1-tp0;
00192 ++pp.vas.iterNum;
00193 }
00194
00195 VoroMesh *rm = new VoroMesh();
00196 tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,0);
00197 tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
00198
00199 if(rm->fn>0)
00200 {
00201
00202 badRegionVec.push_back(rm);
00203 }
00204 m.Clear();
00205 pp.sampleNum = 10;
00206 if(!badRegionVec.empty())
00207 {
00208 for(size_t i=0;i<badRegionVec.size();++i)
00209 if(badRegionVec[i]->fn>50)
00210 tri::Append<VoroMesh,VoroMesh>::Mesh(m, *badRegionVec[i], false);
00211
00212 tri::Clean<VoroMesh>::RemoveDuplicateFace(m);
00213 tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
00214 tri::Allocator<VoroMesh>::CompactVertexVector(m);
00215 tri::Allocator<VoroMesh>::CompactFaceVector(m);
00216 }
00217 } while (m.fn>0);
00218
00219 std::vector<Similarity2f> trVec;
00220 Point2f finalSize;
00221
00222 PolyPacker<float>::PackAsObjectOrientedRect(uvBorders,Point2i(1024,1024),trVec,finalSize);
00223
00224
00225
00226 pp.vas.regionNum=meshRegionVec.size();
00227 for(size_t i=0; i<meshRegionVec.size();++i)
00228 {
00229 VoroMesh *rm = meshRegionVec[i];
00230 for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
00231 {
00232 for(int j=0;j<3;++j)
00233 {
00234 Point2f pp(fi->WT(j).U(),fi->WT(j).V());
00235 Point2f newpp=trVec[i]*pp;
00236 fi->WT(j).U()=newpp[0]/1024.0f;
00237 fi->WT(j).V()=newpp[1]/1024.0f;
00238 }
00239 }
00240 tri::Append<MeshType,VoroMesh>::Mesh(paraMesh, *rm, false);
00241 }
00242 int t2=clock();
00243 pp.vas.totalTime=t2-t0;
00244 }
00245 };
00246
00247
00248 }
00249 }
00250
00251
00252 #endif // VORONOI_ATLAS_H