Public Member Functions | Protected Attributes | Private Types
Eigen::SVD< MatrixType > Class Template Reference

Standard SVD decomposition of a matrix and associated features. More...

#include <SVD.h>

List of all members.

Public Member Functions

void compute (const MatrixType &matrix)
template<typename PositiveType , typename UnitaryType >
void computePositiveUnitary (PositiveType *positive, UnitaryType *unitary) const
template<typename UnitaryType , typename PositiveType >
void computePositiveUnitary (UnitaryType *positive, PositiveType *unitary) const
template<typename RotationType , typename ScalingType >
void computeRotationScaling (RotationType *unitary, ScalingType *positive) const
template<typename ScalingType , typename RotationType >
void computeScalingRotation (ScalingType *positive, RotationType *unitary) const
template<typename UnitaryType , typename PositiveType >
void computeUnitaryPositive (UnitaryType *unitary, PositiveType *positive) const
const MatrixUTypematrixU () const
const MatrixVTypematrixV () const
const SingularValuesTypesingularValues () const
template<typename OtherDerived , typename ResultType >
bool solve (const MatrixBase< OtherDerived > &b, ResultType *result) const
SVDsort ()
 SVD ()
 SVD (const MatrixType &matrix)

Protected Attributes

MatrixUType m_matU
MatrixVType m_matV
SingularValuesType m_sigma

Private Types

enum  { PacketSize = internal::packet_traits<Scalar>::size, AlignmentMask = int(PacketSize)-1, MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime) }
typedef Matrix< Scalar,
MatrixType::RowsAtCompileTime, 1 > 
ColVector
typedef Matrix< Scalar,
MatrixType::RowsAtCompileTime,
MinSize
MatrixUType
typedef Matrix< Scalar,
MatrixType::ColsAtCompileTime,
MatrixType::ColsAtCompileTime > 
MatrixVType
typedef NumTraits< typename
MatrixType::Scalar >::Real 
RealScalar
typedef Matrix< Scalar,
MatrixType::ColsAtCompileTime, 1 > 
RowVector
typedef MatrixType::Scalar Scalar
typedef Matrix< Scalar,
MinSize, 1 > 
SingularValuesType

Detailed Description

template<typename MatrixType>
class Eigen::SVD< MatrixType >

Standard SVD decomposition of a matrix and associated features.

Parameters:
MatrixTypethe type of the matrix of which we are computing the SVD decomposition

This class performs a standard SVD decomposition of a real matrix A of size M x N with M >= N.

See also:
MatrixBase::SVD()

Definition at line 30 of file SVD.h.


Member Typedef Documentation

template<typename MatrixType >
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> Eigen::SVD< MatrixType >::ColVector [private]

Definition at line 42 of file SVD.h.

template<typename MatrixType >
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> Eigen::SVD< MatrixType >::MatrixUType [private]

Definition at line 45 of file SVD.h.

template<typename MatrixType >
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> Eigen::SVD< MatrixType >::MatrixVType [private]

Definition at line 46 of file SVD.h.

template<typename MatrixType >
typedef NumTraits<typename MatrixType::Scalar>::Real Eigen::SVD< MatrixType >::RealScalar [private]

Definition at line 34 of file SVD.h.

template<typename MatrixType >
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> Eigen::SVD< MatrixType >::RowVector [private]

Definition at line 43 of file SVD.h.

template<typename MatrixType >
typedef MatrixType::Scalar Eigen::SVD< MatrixType >::Scalar [private]

Definition at line 33 of file SVD.h.

template<typename MatrixType >
typedef Matrix<Scalar, MinSize, 1> Eigen::SVD< MatrixType >::SingularValuesType [private]

Definition at line 47 of file SVD.h.


Member Enumeration Documentation

template<typename MatrixType >
anonymous enum [private]
Enumerator:
PacketSize 
AlignmentMask 
MinSize 

Definition at line 36 of file SVD.h.


Constructor & Destructor Documentation

template<typename MatrixType >
Eigen::SVD< MatrixType >::SVD ( ) [inline]

Definition at line 51 of file SVD.h.

template<typename MatrixType >
Eigen::SVD< MatrixType >::SVD ( const MatrixType &  matrix) [inline]

Definition at line 53 of file SVD.h.


Member Function Documentation

template<typename MatrixType >
void Eigen::SVD< MatrixType >::compute ( const MatrixType &  matrix)

Computes / recomputes the SVD decomposition A = U S V^* of matrix

Note:
this code has been adapted from JAMA (public domain)

Definition at line 94 of file SVD.h.

template<typename MatrixType >
template<typename PositiveType , typename UnitaryType >
void Eigen::SVD< MatrixType >::computePositiveUnitary ( PositiveType *  positive,
UnitaryType *  unitary 
) const
template<typename MatrixType >
template<typename UnitaryType , typename PositiveType >
void Eigen::SVD< MatrixType >::computePositiveUnitary ( UnitaryType *  positive,
PositiveType *  unitary 
) const

Computes the polar decomposition of the matrix, as a product positive x unitary.

If either pointer is zero, the corresponding computation is skipped.

Only for square matrices.

See also:
computeUnitaryPositive(), computeRotationScaling()

Definition at line 565 of file SVD.h.

template<typename MatrixType >
template<typename RotationType , typename ScalingType >
void Eigen::SVD< MatrixType >::computeRotationScaling ( RotationType *  rotation,
ScalingType *  scaling 
) const

decomposes the matrix as a product rotation x scaling, the scaling being not necessarily positive.

If either pointer is zero, the corresponding computation is skipped.

This method requires the Geometry module.

See also:
computeScalingRotation(), computeUnitaryPositive()

Definition at line 584 of file SVD.h.

template<typename MatrixType >
template<typename ScalingType , typename RotationType >
void Eigen::SVD< MatrixType >::computeScalingRotation ( ScalingType *  scaling,
RotationType *  rotation 
) const

decomposes the matrix as a product scaling x rotation, the scaling being not necessarily positive.

If either pointer is zero, the corresponding computation is skipped.

This method requires the Geometry module.

See also:
computeRotationScaling(), computeUnitaryPositive()

Definition at line 610 of file SVD.h.

template<typename MatrixType >
template<typename UnitaryType , typename PositiveType >
void Eigen::SVD< MatrixType >::computeUnitaryPositive ( UnitaryType *  unitary,
PositiveType *  positive 
) const

Computes the polar decomposition of the matrix, as a product unitary x positive.

If either pointer is zero, the corresponding computation is skipped.

Only for square matrices.

See also:
computePositiveUnitary(), computeRotationScaling()

Definition at line 547 of file SVD.h.

template<typename MatrixType >
const MatrixUType& Eigen::SVD< MatrixType >::matrixU ( ) const [inline]

Definition at line 64 of file SVD.h.

template<typename MatrixType >
const MatrixVType& Eigen::SVD< MatrixType >::matrixV ( ) const [inline]

Definition at line 66 of file SVD.h.

template<typename MatrixType >
const SingularValuesType& Eigen::SVD< MatrixType >::singularValues ( ) const [inline]

Definition at line 65 of file SVD.h.

template<typename MatrixType >
template<typename OtherDerived , typename ResultType >
bool Eigen::SVD< MatrixType >::solve ( const MatrixBase< OtherDerived > &  b,
ResultType *  result 
) const
Returns:
the solution of $ A x = b $ using the current SVD decomposition of A. The parts of the solution corresponding to zero singular values are ignored.
See also:
MatrixBase::svd(), LU::solve(), LLT::solve()

Definition at line 513 of file SVD.h.

template<typename MatrixType >
SVD< MatrixType > & Eigen::SVD< MatrixType >::sort ( )

Definition at line 470 of file SVD.h.


Member Data Documentation

template<typename MatrixType >
MatrixUType Eigen::SVD< MatrixType >::m_matU [protected]

Definition at line 82 of file SVD.h.

template<typename MatrixType >
MatrixVType Eigen::SVD< MatrixType >::m_matV [protected]

Definition at line 84 of file SVD.h.

template<typename MatrixType >
SingularValuesType Eigen::SVD< MatrixType >::m_sigma [protected]

Definition at line 86 of file SVD.h.


The documentation for this class was generated from the following file:


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Sat Jun 8 2019 19:40:54