00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00035 #include <acado_optimal_control.hpp>
00036 #include <acado_gnuplot.hpp>
00037
00038
00039
00040 const double k10 = 1.287e12;
00041 const double k20 = 1.287e12;
00042 const double k30 = 9.043e09;
00043 const double E1 = -9758.3;
00044 const double E2 = -9758.3;
00045 const double E3 = -8560.0;
00046 const double H1 = 4.2;
00047 const double H2 = -11.0;
00048 const double H3 = -41.85;
00049 const double rho = 0.9342;
00050 const double Cp = 3.01;
00051 const double kw = 4032.0;
00052 const double AR = 0.215;
00053 const double VR = 10.0;
00054 const double mK = 5.0;
00055 const double CPK = 2.0;
00056
00057 const double cA0 = 5.1;
00058 const double theta0 = 104.9;
00059
00060 const double FFs = 14.19;
00061 const double QdotKs = -1113.50;
00062
00063 const double cAs = 2.1402105301746182e00;
00064 const double cBs = 1.0903043613077321e00;
00065 const double thetas = 1.1419108442079495e02;
00066 const double thetaKs = 1.1290659291045561e02;
00067
00068
00069 const double TIMEUNITS_PER_HOUR = 3600.0;
00070
00071
00072 const double P11 = 3278.78;
00073 const double P21 = 1677.31;
00074 const double P31 = 681.02;
00075 const double P41 = 271.50;
00076
00077 const double P12 = 1677.31;
00078 const double P22 = 919.78;
00079 const double P32 = 344.19;
00080 const double P42 = 137.27;
00081
00082 const double P13 = 681.02;
00083 const double P23 = 344.19;
00084 const double P33 = 172.45;
00085 const double P43 = 65.53;
00086
00087 const double P14 = 271.50;
00088 const double P24 = 137.27;
00089 const double P34 = 65.53;
00090 const double P44 = 29.28;
00091
00092
00093 const double R_OMEGA = 90.0;
00094
00095
00096
00097 int main( ){
00098
00099 USING_NAMESPACE_ACADO
00100
00101
00102
00103
00104
00105 DifferentialState cA, cB, theta, thetaK;
00106 Control u("", 2, 1);
00107
00108 DifferentialEquation f;
00109
00110 IntermediateState k1, k2, k3;
00111
00112 k1 = k10*exp(E1/(273.15 +theta));
00113 k2 = k20*exp(E2/(273.15 +theta));
00114 k3 = k30*exp(E3/(273.15 +theta));
00115
00116 f << dot(cA) == (1/TIMEUNITS_PER_HOUR)*(u(0)*(cA0-cA) - k1*cA - k3*cA*cA);
00117 f << dot(cB) == (1/TIMEUNITS_PER_HOUR)* (- u(0)*cB + k1*cA - k2*cB);
00118 f << dot(theta) == (1/TIMEUNITS_PER_HOUR)*(u(0)*(theta0-theta) - (1/(rho*Cp)) *(k1*cA*H1 + k2*cB*H2 + k3*cA*cA*H3)+(kw*AR/(rho*Cp*VR))*(thetaK -theta));
00119 f << dot(thetaK) == (1/TIMEUNITS_PER_HOUR)*((1/(mK*CPK))*(u(1) + kw*AR*(theta-thetaK)));
00120
00121
00122
00123
00124
00125 Function h;
00126
00127 h << cA;
00128 h << cB;
00129 h << theta;
00130 h << thetaK;
00131 h << u(0);
00132 h << u(1);
00133
00134 DMatrix S = eye<double>(6);
00135 DVector r = zeros<double>(6);
00136
00137 S(0,0) = 0.2;
00138 S(1,1) = 1.0;
00139 S(2,2) = 0.5;
00140 S(3,3) = 0.2;
00141
00142 S(4,4) = 0.5000;
00143 S(5,5) = 0.0000005;
00144
00145 r(0) = 2.14;
00146 r(1) = 1.09;
00147 r(2) = 114.2;
00148 r(3) = 112.9;
00149 r(4) = 14.19;
00150 r(5) = -1113.5;
00151
00152
00153
00154
00155
00156
00157
00158
00159 double times[11];
00160
00161 int run1;
00162 for( run1 = 0; run1 < 10; run1++ )
00163 times[run1] = run1*80.0;
00164
00165 times[10] = 1500.0;
00166 Grid grid( 11, times );
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179 OCP ocp( grid );
00180
00181
00182
00183 ocp.minimizeLSQ( S, h, r );
00184
00185 ocp.subjectTo( f );
00186
00187 ocp.subjectTo( AT_START, cA == 1.0 );
00188 ocp.subjectTo( AT_START, cB == 0.5 );
00189 ocp.subjectTo( AT_START, theta == 100.0 );
00190 ocp.subjectTo( AT_START, thetaK == 100.0 );
00191
00192 ocp.subjectTo( 3.0 <= u(0) <= 35.0 );
00193 ocp.subjectTo( -9000.0 <= u(1) <= 0.0 );
00194
00195
00196 VariablesGrid cstr75states;
00197 VariablesGrid cstr75controls;
00198
00199 cstr75states.read( "cstr75_states.txt" );
00200 cstr75controls.read( "cstr75_controls.txt" );
00201
00202
00203 GnuplotWindow window1;
00204 window1.addSubplot( cA, "cA [mol/l]","","",PM_LINES,0,1500 );
00205 window1.addData( 0,cstr75states(0) );
00206
00207 GnuplotWindow window2;
00208 window2.addSubplot( cB, "cB [mol/l]","","",PM_LINES,0,1500 );
00209 window2.addData( 0,cstr75states(1) );
00210
00211 GnuplotWindow window3;
00212 window3.addSubplot( theta, "theta [C]","","",PM_LINES,0,1500 );
00213 window3.addData( 0,cstr75states(2) );
00214
00215 GnuplotWindow window4;
00216 window4.addSubplot( thetaK, "thetaK [C]","","",PM_LINES,0,1500 );
00217 window4.addData( 0,cstr75states(3) );
00218
00219 GnuplotWindow window5;
00220 window5.addSubplot( u(0), "u1","","",PM_LINES,0,1500 );
00221 window5.addData( 0,cstr75controls(0) );
00222
00223 GnuplotWindow window6;
00224 window6.addSubplot( u(1), "u2","","",PM_LINES,0,1500 );
00225 window6.addData( 0,cstr75controls(1) );
00226
00227
00228 GnuplotWindow window;
00229 window.addSubplot( cA, "cA [mol/l]","","",PM_LINES,0,1500 );
00230 window.addSubplot( cB, "cB [mol/l]","","",PM_LINES,0,1500 );
00231 window.addSubplot( theta, "theta [C]","","",PM_LINES,0,1500 );
00232 window.addSubplot( thetaK, "thetaK [C]","","",PM_LINES,0,1500 );
00233 window.addSubplot( u(0), "u1","","",PM_LINES,0,1500 );
00234 window.addSubplot( u(1), "u2","","",PM_LINES,0,1500 );
00235
00236 window.addData( 0,cstr75states(0) );
00237 window.addData( 1,cstr75states(1) );
00238 window.addData( 2,cstr75states(2) );
00239 window.addData( 3,cstr75states(3) );
00240 window.addData( 4,cstr75controls(0) );
00241 window.addData( 5,cstr75controls(1) );
00242
00243
00244
00245
00246 OptimizationAlgorithm algorithm(ocp);
00247
00248
00249
00250
00251 algorithm.set( HESSIAN_APPROXIMATION, GAUSS_NEWTON );
00252
00253 algorithm.set( INTEGRATOR_TOLERANCE, 1e-6 );
00254 algorithm.set( KKT_TOLERANCE, 1e-4 );
00255
00256
00257 algorithm.set( PRINT_SCP_METHOD_PROFILE, YES );
00258
00259 VariablesGrid uStart( 2,0.0,2000.0,2 );
00260 uStart( 0,0 ) = 14.19;
00261 uStart( 0,1 ) = -1113.5;
00262 uStart( 1,0 ) = 14.19;
00263 uStart( 1,1 ) = -1113.5;
00264
00265 algorithm.initializeControls( uStart );
00266
00267 algorithm << window1;
00268 algorithm << window2;
00269 algorithm << window3;
00270 algorithm << window4;
00271 algorithm << window5;
00272 algorithm << window6;
00273
00274 algorithm << window;
00275 algorithm.solve();
00276
00277
00278
00279
00280
00281
00282
00283 return 0;
00284 }
00285
00286
00287