IMGUIGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-pr2_object_manipulation/doc_stacks/2014-10-06_11-30-38.833395/pr2_object_manipulation/manipulation/pr2_object_manipulation_msgs/msg/IMGUIGoal.msg */
00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIGOAL_H
00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "pr2_object_manipulation_msgs/IMGUIOptions.h"
00018 #include "pr2_object_manipulation_msgs/IMGUICommand.h"
00019 
00020 namespace pr2_object_manipulation_msgs
00021 {
00022 template <class ContainerAllocator>
00023 struct IMGUIGoal_ {
00024   typedef IMGUIGoal_<ContainerAllocator> Type;
00025 
00026   IMGUIGoal_()
00027   : options()
00028   , command()
00029   {
00030   }
00031 
00032   IMGUIGoal_(const ContainerAllocator& _alloc)
00033   : options(_alloc)
00034   , command(_alloc)
00035   {
00036   }
00037 
00038   typedef  ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator>  _options_type;
00039    ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator>  options;
00040 
00041   typedef  ::pr2_object_manipulation_msgs::IMGUICommand_<ContainerAllocator>  _command_type;
00042    ::pr2_object_manipulation_msgs::IMGUICommand_<ContainerAllocator>  command;
00043 
00044 
00045   typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > Ptr;
00046   typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator>  const> ConstPtr;
00047   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00048 }; // struct IMGUIGoal
00049 typedef  ::pr2_object_manipulation_msgs::IMGUIGoal_<std::allocator<void> > IMGUIGoal;
00050 
00051 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIGoal> IMGUIGoalPtr;
00052 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIGoal const> IMGUIGoalConstPtr;
00053 
00054 
00055 template<typename ContainerAllocator>
00056 std::ostream& operator<<(std::ostream& s, const  ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> & v)
00057 {
00058   ros::message_operations::Printer< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> >::stream(s, "", v);
00059   return s;}
00060 
00061 } // namespace pr2_object_manipulation_msgs
00062 
00063 namespace ros
00064 {
00065 namespace message_traits
00066 {
00067 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > : public TrueType {};
00068 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator>  const> : public TrueType {};
00069 template<class ContainerAllocator>
00070 struct MD5Sum< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > {
00071   static const char* value() 
00072   {
00073     return "0e5b7f8584a8f04fd13e1dbb3c14d7c5";
00074   }
00075 
00076   static const char* value(const  ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> &) { return value(); } 
00077   static const uint64_t static_value1 = 0x0e5b7f8584a8f04fULL;
00078   static const uint64_t static_value2 = 0xd13e1dbb3c14d7c5ULL;
00079 };
00080 
00081 template<class ContainerAllocator>
00082 struct DataType< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > {
00083   static const char* value() 
00084   {
00085     return "pr2_object_manipulation_msgs/IMGUIGoal";
00086   }
00087 
00088   static const char* value(const  ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> &) { return value(); } 
00089 };
00090 
00091 template<class ContainerAllocator>
00092 struct Definition< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> > {
00093   static const char* value() 
00094   {
00095     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00096 \n\
00097 IMGUIOptions options\n\
00098 IMGUICommand command\n\
00099 \n\
00100 \n\
00101 ================================================================================\n\
00102 MSG: pr2_object_manipulation_msgs/IMGUIOptions\n\
00103 \n\
00104 # collision checking enabled\n\
00105 bool collision_checked\n\
00106 \n\
00107 # 0=call gripper click\n\
00108 # 1=grasp the provided graspable object\n\
00109 int32 grasp_selection\n\
00110 \n\
00111 # 0=right, 1=left arm\n\
00112 int32 arm_selection\n\
00113 \n\
00114 # for RESET commands\n\
00115 # 0=reset collision objects\n\
00116 # 1=reset attached objects\n\
00117 int32 reset_choice\n\
00118 \n\
00119 # for MOVE_ARM commands\n\
00120 # 0=side\n\
00121 # 1=front\n\
00122 # 2=side handoff\n\
00123 int32 arm_action_choice\n\
00124 \n\
00125 # for MOVE_ARM commands\n\
00126 # 0=open-loop\n\
00127 # 1=with planner\n\
00128 int32 arm_planner_choice\n\
00129 \n\
00130 # for MOVE_GRIPPER commands\n\
00131 # opening of gripper (0=closed..100=open)\n\
00132 int32 gripper_slider_position\n\
00133 \n\
00134 # used if grasp_selection == 1\n\
00135 manipulation_msgs/GraspableObject selected_object\n\
00136 \n\
00137 # indicates obstacles that can be moved during grasping\n\
00138 # presumably, the operator has marked these in some fashion\n\
00139 manipulation_msgs/GraspableObject[] movable_obstacles\n\
00140 \n\
00141 # more options..\n\
00142 IMGUIAdvancedOptions adv_options\n\
00143 \n\
00144 ================================================================================\n\
00145 MSG: manipulation_msgs/GraspableObject\n\
00146 # an object that the object_manipulator can work on\n\
00147 \n\
00148 # a graspable object can be represented in multiple ways. This message\n\
00149 # can contain all of them. Which one is actually used is up to the receiver\n\
00150 # of this message. When adding new representations, one must be careful that\n\
00151 # they have reasonable lightweight defaults indicating that that particular\n\
00152 # representation is not available.\n\
00153 \n\
00154 # the tf frame to be used as a reference frame when combining information from\n\
00155 # the different representations below\n\
00156 string reference_frame_id\n\
00157 \n\
00158 # potential recognition results from a database of models\n\
00159 # all poses are relative to the object reference pose\n\
00160 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00161 \n\
00162 # the point cloud itself\n\
00163 sensor_msgs/PointCloud cluster\n\
00164 \n\
00165 # a region of a PointCloud2 of interest\n\
00166 SceneRegion region\n\
00167 \n\
00168 # the name that this object has in the collision environment\n\
00169 string collision_name\n\
00170 ================================================================================\n\
00171 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00172 # Informs that a specific model from the Model Database has been \n\
00173 # identified at a certain location\n\
00174 \n\
00175 # the database id of the model\n\
00176 int32 model_id\n\
00177 \n\
00178 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00179 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00180 # leave this empty if providing an id in the model_id field\n\
00181 object_recognition_msgs/ObjectType type\n\
00182 \n\
00183 # the pose that it can be found in\n\
00184 geometry_msgs/PoseStamped pose\n\
00185 \n\
00186 # a measure of the confidence level in this detection result\n\
00187 float32 confidence\n\
00188 \n\
00189 # the name of the object detector that generated this detection result\n\
00190 string detector_name\n\
00191 \n\
00192 ================================================================================\n\
00193 MSG: object_recognition_msgs/ObjectType\n\
00194 ################################################## OBJECT ID #########################################################\n\
00195 \n\
00196 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00197 # object\n\
00198 \n\
00199 # The key of the found object: the unique identifier in the given db\n\
00200 string key\n\
00201 \n\
00202 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00203 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00204 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00205 # The object_recognition_core as a generic DB type that can read those fields\n\
00206 # Current examples:\n\
00207 # For CouchDB:\n\
00208 #   type: 'CouchDB'\n\
00209 #   root: 'http://localhost:5984'\n\
00210 #   collection: 'object_recognition'\n\
00211 # For SQL household database:\n\
00212 #   type: 'SqlHousehold'\n\
00213 #   host: 'wgs36'\n\
00214 #   port: 5432\n\
00215 #   user: 'willow'\n\
00216 #   password: 'willow'\n\
00217 #   name: 'household_objects'\n\
00218 #   module: 'tabletop'\n\
00219 string db\n\
00220 \n\
00221 ================================================================================\n\
00222 MSG: geometry_msgs/PoseStamped\n\
00223 # A Pose with reference coordinate frame and timestamp\n\
00224 Header header\n\
00225 Pose pose\n\
00226 \n\
00227 ================================================================================\n\
00228 MSG: std_msgs/Header\n\
00229 # Standard metadata for higher-level stamped data types.\n\
00230 # This is generally used to communicate timestamped data \n\
00231 # in a particular coordinate frame.\n\
00232 # \n\
00233 # sequence ID: consecutively increasing ID \n\
00234 uint32 seq\n\
00235 #Two-integer timestamp that is expressed as:\n\
00236 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00237 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00238 # time-handling sugar is provided by the client library\n\
00239 time stamp\n\
00240 #Frame this data is associated with\n\
00241 # 0: no frame\n\
00242 # 1: global frame\n\
00243 string frame_id\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: geometry_msgs/Pose\n\
00247 # A representation of pose in free space, composed of postion and orientation. \n\
00248 Point position\n\
00249 Quaternion orientation\n\
00250 \n\
00251 ================================================================================\n\
00252 MSG: geometry_msgs/Point\n\
00253 # This contains the position of a point in free space\n\
00254 float64 x\n\
00255 float64 y\n\
00256 float64 z\n\
00257 \n\
00258 ================================================================================\n\
00259 MSG: geometry_msgs/Quaternion\n\
00260 # This represents an orientation in free space in quaternion form.\n\
00261 \n\
00262 float64 x\n\
00263 float64 y\n\
00264 float64 z\n\
00265 float64 w\n\
00266 \n\
00267 ================================================================================\n\
00268 MSG: sensor_msgs/PointCloud\n\
00269 # This message holds a collection of 3d points, plus optional additional\n\
00270 # information about each point.\n\
00271 \n\
00272 # Time of sensor data acquisition, coordinate frame ID.\n\
00273 Header header\n\
00274 \n\
00275 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00276 # in the frame given in the header.\n\
00277 geometry_msgs/Point32[] points\n\
00278 \n\
00279 # Each channel should have the same number of elements as points array,\n\
00280 # and the data in each channel should correspond 1:1 with each point.\n\
00281 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00282 ChannelFloat32[] channels\n\
00283 \n\
00284 ================================================================================\n\
00285 MSG: geometry_msgs/Point32\n\
00286 # This contains the position of a point in free space(with 32 bits of precision).\n\
00287 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00288 # \n\
00289 # This recommendation is to promote interoperability.  \n\
00290 #\n\
00291 # This message is designed to take up less space when sending\n\
00292 # lots of points at once, as in the case of a PointCloud.  \n\
00293 \n\
00294 float32 x\n\
00295 float32 y\n\
00296 float32 z\n\
00297 ================================================================================\n\
00298 MSG: sensor_msgs/ChannelFloat32\n\
00299 # This message is used by the PointCloud message to hold optional data\n\
00300 # associated with each point in the cloud. The length of the values\n\
00301 # array should be the same as the length of the points array in the\n\
00302 # PointCloud, and each value should be associated with the corresponding\n\
00303 # point.\n\
00304 \n\
00305 # Channel names in existing practice include:\n\
00306 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00307 #              This is opposite to usual conventions but remains for\n\
00308 #              historical reasons. The newer PointCloud2 message has no\n\
00309 #              such problem.\n\
00310 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00311 #           (R,G,B) values packed into the least significant 24 bits,\n\
00312 #           in order.\n\
00313 #   \"intensity\" - laser or pixel intensity.\n\
00314 #   \"distance\"\n\
00315 \n\
00316 # The channel name should give semantics of the channel (e.g.\n\
00317 # \"intensity\" instead of \"value\").\n\
00318 string name\n\
00319 \n\
00320 # The values array should be 1-1 with the elements of the associated\n\
00321 # PointCloud.\n\
00322 float32[] values\n\
00323 \n\
00324 ================================================================================\n\
00325 MSG: manipulation_msgs/SceneRegion\n\
00326 # Point cloud\n\
00327 sensor_msgs/PointCloud2 cloud\n\
00328 \n\
00329 # Indices for the region of interest\n\
00330 int32[] mask\n\
00331 \n\
00332 # One of the corresponding 2D images, if applicable\n\
00333 sensor_msgs/Image image\n\
00334 \n\
00335 # The disparity image, if applicable\n\
00336 sensor_msgs/Image disparity_image\n\
00337 \n\
00338 # Camera info for the camera that took the image\n\
00339 sensor_msgs/CameraInfo cam_info\n\
00340 \n\
00341 # a 3D region of interest for grasp planning\n\
00342 geometry_msgs/PoseStamped  roi_box_pose\n\
00343 geometry_msgs/Vector3      roi_box_dims\n\
00344 \n\
00345 ================================================================================\n\
00346 MSG: sensor_msgs/PointCloud2\n\
00347 # This message holds a collection of N-dimensional points, which may\n\
00348 # contain additional information such as normals, intensity, etc. The\n\
00349 # point data is stored as a binary blob, its layout described by the\n\
00350 # contents of the \"fields\" array.\n\
00351 \n\
00352 # The point cloud data may be organized 2d (image-like) or 1d\n\
00353 # (unordered). Point clouds organized as 2d images may be produced by\n\
00354 # camera depth sensors such as stereo or time-of-flight.\n\
00355 \n\
00356 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00357 # points).\n\
00358 Header header\n\
00359 \n\
00360 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00361 # 1 and width is the length of the point cloud.\n\
00362 uint32 height\n\
00363 uint32 width\n\
00364 \n\
00365 # Describes the channels and their layout in the binary data blob.\n\
00366 PointField[] fields\n\
00367 \n\
00368 bool    is_bigendian # Is this data bigendian?\n\
00369 uint32  point_step   # Length of a point in bytes\n\
00370 uint32  row_step     # Length of a row in bytes\n\
00371 uint8[] data         # Actual point data, size is (row_step*height)\n\
00372 \n\
00373 bool is_dense        # True if there are no invalid points\n\
00374 \n\
00375 ================================================================================\n\
00376 MSG: sensor_msgs/PointField\n\
00377 # This message holds the description of one point entry in the\n\
00378 # PointCloud2 message format.\n\
00379 uint8 INT8    = 1\n\
00380 uint8 UINT8   = 2\n\
00381 uint8 INT16   = 3\n\
00382 uint8 UINT16  = 4\n\
00383 uint8 INT32   = 5\n\
00384 uint8 UINT32  = 6\n\
00385 uint8 FLOAT32 = 7\n\
00386 uint8 FLOAT64 = 8\n\
00387 \n\
00388 string name      # Name of field\n\
00389 uint32 offset    # Offset from start of point struct\n\
00390 uint8  datatype  # Datatype enumeration, see above\n\
00391 uint32 count     # How many elements in the field\n\
00392 \n\
00393 ================================================================================\n\
00394 MSG: sensor_msgs/Image\n\
00395 # This message contains an uncompressed image\n\
00396 # (0, 0) is at top-left corner of image\n\
00397 #\n\
00398 \n\
00399 Header header        # Header timestamp should be acquisition time of image\n\
00400                      # Header frame_id should be optical frame of camera\n\
00401                      # origin of frame should be optical center of cameara\n\
00402                      # +x should point to the right in the image\n\
00403                      # +y should point down in the image\n\
00404                      # +z should point into to plane of the image\n\
00405                      # If the frame_id here and the frame_id of the CameraInfo\n\
00406                      # message associated with the image conflict\n\
00407                      # the behavior is undefined\n\
00408 \n\
00409 uint32 height         # image height, that is, number of rows\n\
00410 uint32 width          # image width, that is, number of columns\n\
00411 \n\
00412 # The legal values for encoding are in file src/image_encodings.cpp\n\
00413 # If you want to standardize a new string format, join\n\
00414 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00415 \n\
00416 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00417                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00418 \n\
00419 uint8 is_bigendian    # is this data bigendian?\n\
00420 uint32 step           # Full row length in bytes\n\
00421 uint8[] data          # actual matrix data, size is (step * rows)\n\
00422 \n\
00423 ================================================================================\n\
00424 MSG: sensor_msgs/CameraInfo\n\
00425 # This message defines meta information for a camera. It should be in a\n\
00426 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00427 # image topics named:\n\
00428 #\n\
00429 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00430 #   image            - monochrome, distorted\n\
00431 #   image_color      - color, distorted\n\
00432 #   image_rect       - monochrome, rectified\n\
00433 #   image_rect_color - color, rectified\n\
00434 #\n\
00435 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00436 # for producing the four processed image topics from image_raw and\n\
00437 # camera_info. The meaning of the camera parameters are described in\n\
00438 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00439 #\n\
00440 # The image_geometry package provides a user-friendly interface to\n\
00441 # common operations using this meta information. If you want to, e.g.,\n\
00442 # project a 3d point into image coordinates, we strongly recommend\n\
00443 # using image_geometry.\n\
00444 #\n\
00445 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00446 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00447 # indicates an uncalibrated camera.\n\
00448 \n\
00449 #######################################################################\n\
00450 #                     Image acquisition info                          #\n\
00451 #######################################################################\n\
00452 \n\
00453 # Time of image acquisition, camera coordinate frame ID\n\
00454 Header header    # Header timestamp should be acquisition time of image\n\
00455                  # Header frame_id should be optical frame of camera\n\
00456                  # origin of frame should be optical center of camera\n\
00457                  # +x should point to the right in the image\n\
00458                  # +y should point down in the image\n\
00459                  # +z should point into the plane of the image\n\
00460 \n\
00461 \n\
00462 #######################################################################\n\
00463 #                      Calibration Parameters                         #\n\
00464 #######################################################################\n\
00465 # These are fixed during camera calibration. Their values will be the #\n\
00466 # same in all messages until the camera is recalibrated. Note that    #\n\
00467 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00468 #                                                                     #\n\
00469 # The internal parameters can be used to warp a raw (distorted) image #\n\
00470 # to:                                                                 #\n\
00471 #   1. An undistorted image (requires D and K)                        #\n\
00472 #   2. A rectified image (requires D, K, R)                           #\n\
00473 # The projection matrix P projects 3D points into the rectified image.#\n\
00474 #######################################################################\n\
00475 \n\
00476 # The image dimensions with which the camera was calibrated. Normally\n\
00477 # this will be the full camera resolution in pixels.\n\
00478 uint32 height\n\
00479 uint32 width\n\
00480 \n\
00481 # The distortion model used. Supported models are listed in\n\
00482 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00483 # simple model of radial and tangential distortion - is sufficent.\n\
00484 string distortion_model\n\
00485 \n\
00486 # The distortion parameters, size depending on the distortion model.\n\
00487 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00488 float64[] D\n\
00489 \n\
00490 # Intrinsic camera matrix for the raw (distorted) images.\n\
00491 #     [fx  0 cx]\n\
00492 # K = [ 0 fy cy]\n\
00493 #     [ 0  0  1]\n\
00494 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00495 # coordinates using the focal lengths (fx, fy) and principal point\n\
00496 # (cx, cy).\n\
00497 float64[9]  K # 3x3 row-major matrix\n\
00498 \n\
00499 # Rectification matrix (stereo cameras only)\n\
00500 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00501 # stereo image plane so that epipolar lines in both stereo images are\n\
00502 # parallel.\n\
00503 float64[9]  R # 3x3 row-major matrix\n\
00504 \n\
00505 # Projection/camera matrix\n\
00506 #     [fx'  0  cx' Tx]\n\
00507 # P = [ 0  fy' cy' Ty]\n\
00508 #     [ 0   0   1   0]\n\
00509 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00510 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00511 #  is the normal camera intrinsic matrix for the rectified image.\n\
00512 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00513 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00514 #  (cx', cy') - these may differ from the values in K.\n\
00515 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00516 #  also have R = the identity and P[1:3,1:3] = K.\n\
00517 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00518 #  position of the optical center of the second camera in the first\n\
00519 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00520 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00521 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00522 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00523 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00524 #  the rectified image is given by:\n\
00525 #  [u v w]' = P * [X Y Z 1]'\n\
00526 #         x = u / w\n\
00527 #         y = v / w\n\
00528 #  This holds for both images of a stereo pair.\n\
00529 float64[12] P # 3x4 row-major matrix\n\
00530 \n\
00531 \n\
00532 #######################################################################\n\
00533 #                      Operational Parameters                         #\n\
00534 #######################################################################\n\
00535 # These define the image region actually captured by the camera       #\n\
00536 # driver. Although they affect the geometry of the output image, they #\n\
00537 # may be changed freely without recalibrating the camera.             #\n\
00538 #######################################################################\n\
00539 \n\
00540 # Binning refers here to any camera setting which combines rectangular\n\
00541 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00542 #  resolution of the output image to\n\
00543 #  (width / binning_x) x (height / binning_y).\n\
00544 # The default values binning_x = binning_y = 0 is considered the same\n\
00545 #  as binning_x = binning_y = 1 (no subsampling).\n\
00546 uint32 binning_x\n\
00547 uint32 binning_y\n\
00548 \n\
00549 # Region of interest (subwindow of full camera resolution), given in\n\
00550 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00551 #  always denotes the same window of pixels on the camera sensor,\n\
00552 #  regardless of binning settings.\n\
00553 # The default setting of roi (all values 0) is considered the same as\n\
00554 #  full resolution (roi.width = width, roi.height = height).\n\
00555 RegionOfInterest roi\n\
00556 \n\
00557 ================================================================================\n\
00558 MSG: sensor_msgs/RegionOfInterest\n\
00559 # This message is used to specify a region of interest within an image.\n\
00560 #\n\
00561 # When used to specify the ROI setting of the camera when the image was\n\
00562 # taken, the height and width fields should either match the height and\n\
00563 # width fields for the associated image; or height = width = 0\n\
00564 # indicates that the full resolution image was captured.\n\
00565 \n\
00566 uint32 x_offset  # Leftmost pixel of the ROI\n\
00567                  # (0 if the ROI includes the left edge of the image)\n\
00568 uint32 y_offset  # Topmost pixel of the ROI\n\
00569                  # (0 if the ROI includes the top edge of the image)\n\
00570 uint32 height    # Height of ROI\n\
00571 uint32 width     # Width of ROI\n\
00572 \n\
00573 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00574 # ROI in this message. Typically this should be False if the full image\n\
00575 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00576 # used).\n\
00577 bool do_rectify\n\
00578 \n\
00579 ================================================================================\n\
00580 MSG: geometry_msgs/Vector3\n\
00581 # This represents a vector in free space. \n\
00582 \n\
00583 float64 x\n\
00584 float64 y\n\
00585 float64 z\n\
00586 ================================================================================\n\
00587 MSG: pr2_object_manipulation_msgs/IMGUIAdvancedOptions\n\
00588         \n\
00589 bool reactive_grasping\n\
00590 bool reactive_force     \n\
00591 bool reactive_place\n\
00592 int32 lift_steps\n\
00593 int32 retreat_steps\n\
00594 int32 lift_direction_choice\n\
00595 int32 desired_approach\n\
00596 int32 min_approach\n\
00597 float32 max_contact_force\n\
00598 bool find_alternatives\n\
00599 bool always_plan_grasps\n\
00600 bool cycle_gripper_opening\n\
00601 \n\
00602 ================================================================================\n\
00603 MSG: pr2_object_manipulation_msgs/IMGUICommand\n\
00604 \n\
00605 int32 PICKUP = 0\n\
00606 int32 PLACE = 1\n\
00607 int32 PLANNED_MOVE = 2\n\
00608 int32 RESET = 3\n\
00609 int32 MOVE_ARM = 4\n\
00610 int32 LOOK_AT_TABLE = 5\n\
00611 int32 MODEL_OBJECT = 6\n\
00612 int32 MOVE_GRIPPER = 7\n\
00613 int32 SCRIPTED_ACTION = 8\n\
00614 int32 STOP_NAV = 9\n\
00615 \n\
00616 int32 command\n\
00617 string script_name\n\
00618 string script_group_name\n\
00619 \n\
00620 ";
00621   }
00622 
00623   static const char* value(const  ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> &) { return value(); } 
00624 };
00625 
00626 } // namespace message_traits
00627 } // namespace ros
00628 
00629 namespace ros
00630 {
00631 namespace serialization
00632 {
00633 
00634 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> >
00635 {
00636   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00637   {
00638     stream.next(m.options);
00639     stream.next(m.command);
00640   }
00641 
00642   ROS_DECLARE_ALLINONE_SERIALIZER;
00643 }; // struct IMGUIGoal_
00644 } // namespace serialization
00645 } // namespace ros
00646 
00647 namespace ros
00648 {
00649 namespace message_operations
00650 {
00651 
00652 template<class ContainerAllocator>
00653 struct Printer< ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> >
00654 {
00655   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::pr2_object_manipulation_msgs::IMGUIGoal_<ContainerAllocator> & v) 
00656   {
00657     s << indent << "options: ";
00658 s << std::endl;
00659     Printer< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> >::stream(s, indent + "  ", v.options);
00660     s << indent << "command: ";
00661 s << std::endl;
00662     Printer< ::pr2_object_manipulation_msgs::IMGUICommand_<ContainerAllocator> >::stream(s, indent + "  ", v.command);
00663   }
00664 };
00665 
00666 
00667 } // namespace message_operations
00668 } // namespace ros
00669 
00670 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIGOAL_H
00671 


pr2_object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 11:55:21