Base class for all dense matrices, vectors, and expressions. More...
#include <MatrixBase.h>
Classes | |
struct | ConstDiagonalIndexReturnType |
struct | ConstSelfAdjointViewReturnType |
struct | ConstTriangularViewReturnType |
struct | cross_product_return_type |
struct | DiagonalIndexReturnType |
struct | SelfAdjointViewReturnType |
struct | TriangularViewReturnType |
Public Types | |
enum | { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 } |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, CwiseUnaryOp < internal::scalar_conjugate_op < Scalar > , ConstTransposeReturnType > , ConstTransposeReturnType > ::type | AdjointReturnType |
typedef DenseBase< Derived > | Base |
typedef Block< const CwiseNullaryOp < internal::scalar_identity_op < Scalar >, SquareMatrixType > , internal::traits< Derived > ::RowsAtCompileTime, internal::traits< Derived > ::ColsAtCompileTime > | BasisReturnType |
typedef Base::CoeffReturnType | CoeffReturnType |
typedef Base::ColXpr | ColXpr |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, const CwiseUnaryOp < internal::scalar_conjugate_op < Scalar >, const Derived > , const Derived & >::type | ConjugateReturnType |
typedef CwiseNullaryOp < internal::scalar_constant_op < Scalar >, Derived > | ConstantReturnType |
typedef const Diagonal< const Derived > | ConstDiagonalReturnType |
typedef Block< const Derived, internal::traits< Derived > ::ColsAtCompileTime==1?SizeMinusOne:1, internal::traits< Derived > ::ColsAtCompileTime==1?1:SizeMinusOne > | ConstStartMinusOne |
typedef Base::ConstTransposeReturnType | ConstTransposeReturnType |
typedef Diagonal< Derived > | DiagonalReturnType |
typedef Matrix< std::complex < RealScalar > , internal::traits< Derived > ::ColsAtCompileTime, 1, ColMajor > | EigenvaluesReturnType |
typedef CwiseUnaryOp < internal::scalar_quotient1_op < typename internal::traits < Derived >::Scalar >, const ConstStartMinusOne > | HNormalizedReturnType |
typedef CwiseNullaryOp < internal::scalar_identity_op < Scalar >, Derived > | IdentityReturnType |
typedef CwiseUnaryOp < internal::scalar_imag_op < Scalar >, const Derived > | ImagReturnType |
typedef internal::traits < Derived >::Index | Index |
The type of indices. | |
typedef CwiseUnaryView < internal::scalar_imag_ref_op < Scalar >, Derived > | NonConstImagReturnType |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, CwiseUnaryView < internal::scalar_real_ref_op < Scalar >, Derived >, Derived & > ::type | NonConstRealReturnType |
typedef internal::packet_traits < Scalar >::type | PacketScalar |
typedef Matrix< typename internal::traits< Derived > ::Scalar, internal::traits < Derived >::RowsAtCompileTime, internal::traits< Derived > ::ColsAtCompileTime, AutoAlign|(internal::traits < Derived >::Flags &RowMajorBit?RowMajor:ColMajor), internal::traits< Derived > ::MaxRowsAtCompileTime, internal::traits< Derived > ::MaxColsAtCompileTime > | PlainObject |
The plain matrix type corresponding to this expression. | |
typedef internal::conditional < NumTraits< Scalar > ::IsComplex, const CwiseUnaryOp < internal::scalar_real_op < Scalar >, const Derived > , const Derived & >::type | RealReturnType |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef Base::RowXpr | RowXpr |
typedef internal::traits < Derived >::Scalar | Scalar |
typedef CwiseUnaryOp < internal::scalar_multiple_op < Scalar >, const Derived > | ScalarMultipleReturnType |
typedef CwiseUnaryOp < internal::scalar_quotient1_op < Scalar >, const Derived > | ScalarQuotient1ReturnType |
typedef Matrix< Scalar, EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime, ColsAtCompileTime)> | SquareMatrixType |
typedef internal::stem_function < Scalar >::type | StemFunction |
typedef MatrixBase | StorageBaseType |
typedef internal::traits < Derived >::StorageKind | StorageKind |
Public Member Functions | |
const AdjointReturnType | adjoint () const |
void | adjointInPlace () |
template<typename EssentialPart > | |
void | applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename EssentialPart > | |
void | applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename OtherDerived > | |
void | applyOnTheLeft (const EigenBase< OtherDerived > &other) |
template<typename OtherScalar > | |
void | applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
template<typename OtherDerived > | |
void | applyOnTheRight (const EigenBase< OtherDerived > &other) |
template<typename OtherScalar > | |
void | applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
ArrayWrapper< Derived > | array () |
const ArrayWrapper< Derived > | array () const |
const DiagonalWrapper< const Derived > | asDiagonal () const |
const PermutationWrapper < const Derived > | asPermutation () const |
template<typename CustomBinaryOp , typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp< CustomBinaryOp, const Derived, const OtherDerived > | binaryExpr (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const |
RealScalar | blueNorm () const |
template<typename NewType > | |
internal::cast_return_type < Derived, const CwiseUnaryOp < internal::scalar_cast_op < typename internal::traits < Derived >::Scalar, NewType > , const Derived > >::type | cast () const |
const ColPivHouseholderQR < PlainObject > | colPivHouseholderQr () const |
template<typename ResultType > | |
void | computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
template<typename ResultType > | |
void | computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
ConjugateReturnType | conjugate () const |
const MatrixFunctionReturnValue < Derived > | cos () const |
const MatrixFunctionReturnValue < Derived > | cosh () const |
template<typename OtherDerived > | |
cross_product_return_type < OtherDerived >::type | cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
PlainObject | cross3 (const MatrixBase< OtherDerived > &other) const |
EIGEN_STRONG_INLINE const CwiseUnaryOp < internal::scalar_abs_op < Scalar >, const Derived > | cwiseAbs () const |
EIGEN_STRONG_INLINE const CwiseUnaryOp < internal::scalar_abs2_op < Scalar >, const Derived > | cwiseAbs2 () const |
template<typename OtherDerived > | |
const CwiseBinaryOp < std::equal_to< Scalar > , const Derived, const OtherDerived > | cwiseEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
const CwiseUnaryOp < std::binder1st < std::equal_to< Scalar > >, const Derived > | cwiseEqual (const Scalar &s) const |
const CwiseUnaryOp < internal::scalar_inverse_op < Scalar >, const Derived > | cwiseInverse () const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_max_op < Scalar >, const Derived, const OtherDerived > | cwiseMax (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_min_op < Scalar >, const Derived, const OtherDerived > | cwiseMin (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
const CwiseBinaryOp < std::not_equal_to< Scalar > , const Derived, const OtherDerived > | cwiseNotEqual (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const CwiseBinaryOp < internal::scalar_quotient_op < Scalar >, const Derived, const OtherDerived > | cwiseQuotient (const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
const CwiseUnaryOp < internal::scalar_sqrt_op < Scalar >, const Derived > | cwiseSqrt () const |
Scalar | determinant () const |
DiagonalReturnType | diagonal () |
const ConstDiagonalReturnType | diagonal () const |
template<int Index> | |
DiagonalIndexReturnType< Index > ::Type | diagonal () |
template<int Index> | |
ConstDiagonalIndexReturnType < Index >::Type | diagonal () const |
DiagonalIndexReturnType < Dynamic >::Type | diagonal (Index index) |
ConstDiagonalIndexReturnType < Dynamic >::Type | diagonal (Index index) const |
Index | diagonalSize () const |
template<typename OtherDerived > | |
internal::scalar_product_traits < typename internal::traits < Derived >::Scalar, typename internal::traits< OtherDerived > ::Scalar >::ReturnType | dot (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
EIGEN_STRONG_INLINE const | EIGEN_CWISE_PRODUCT_RETURN_TYPE (Derived, OtherDerived) cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > &other) const |
EigenvaluesReturnType | eigenvalues () const |
Computes the eigenvalues of a matrix. | |
Matrix< Scalar, 3, 1 > | eulerAngles (Index a0, Index a1, Index a2) const |
const MatrixExponentialReturnValue < Derived > | exp () const |
const ForceAlignedAccess< Derived > | forceAlignedAccess () const |
ForceAlignedAccess< Derived > | forceAlignedAccess () |
template<bool Enable> | |
internal::add_const_on_value_type < typename internal::conditional< Enable, ForceAlignedAccess< Derived > , Derived & >::type >::type | forceAlignedAccessIf () const |
template<bool Enable> | |
internal::conditional< Enable, ForceAlignedAccess< Derived > , Derived & >::type | forceAlignedAccessIf () |
const FullPivHouseholderQR < PlainObject > | fullPivHouseholderQr () const |
const FullPivLU< PlainObject > | fullPivLu () const |
const HNormalizedReturnType | hnormalized () const |
const HouseholderQR< PlainObject > | householderQr () const |
RealScalar | hypotNorm () const |
const ImagReturnType | imag () const |
NonConstImagReturnType | imag () |
const internal::inverse_impl < Derived > | inverse () const |
bool | isDiagonal (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isIdentity (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isLowerTriangular (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
bool | isOrthogonal (const MatrixBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUnitary (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUpperTriangular (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const |
JacobiSVD< PlainObject > | jacobiSvd (unsigned int computationOptions=0) const |
template<typename ProductDerived , typename Lhs , typename Rhs > | |
Derived & | lazyAssign (const ProductBase< ProductDerived, Lhs, Rhs > &other) |
template<typename OtherDerived > | |
const LazyProductReturnType < Derived, OtherDerived > ::Type | lazyProduct (const MatrixBase< OtherDerived > &other) const |
const LDLT< PlainObject > | ldlt () const |
const LLT< PlainObject > | llt () const |
template<int p> | |
RealScalar | lpNorm () const |
template<typename EssentialPart > | |
void | makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const |
void | makeHouseholderInPlace (Scalar &tau, RealScalar &beta) |
MatrixBase< Derived > & | matrix () |
const MatrixBase< Derived > & | matrix () const |
const MatrixFunctionReturnValue < Derived > | matrixFunction (StemFunction f) const |
NoAlias< Derived, Eigen::MatrixBase > | noalias () |
RealScalar | norm () const |
void | normalize () |
const PlainObject | normalized () const |
template<typename OtherDerived > | |
bool | operator!= (const MatrixBase< OtherDerived > &other) const |
const ScalarMultipleReturnType | operator* (const Scalar &scalar) const |
const CwiseUnaryOp < internal::scalar_multiple2_op < Scalar, std::complex< Scalar > >, const Derived > | operator* (const std::complex< Scalar > &scalar) const |
template<typename Derived > | |
MatrixBase< Derived > ::ScalarMultipleReturnType | operator* (const UniformScaling< Scalar > &s) const |
template<typename OtherDerived > | |
const ProductReturnType < Derived, OtherDerived > ::Type | operator* (const MatrixBase< OtherDerived > &other) const |
template<typename DiagonalDerived > | |
const DiagonalProduct< Derived, DiagonalDerived, OnTheRight > | operator* (const DiagonalBase< DiagonalDerived > &diagonal) const |
template<typename OtherDerived > | |
Derived & | operator*= (const EigenBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator+= (const MatrixBase< OtherDerived > &other) |
const CwiseUnaryOp < internal::scalar_opposite_op < typename internal::traits < Derived >::Scalar >, const Derived > | operator- () const |
template<typename OtherDerived > | |
Derived & | operator-= (const MatrixBase< OtherDerived > &other) |
const CwiseUnaryOp < internal::scalar_quotient1_op < typename internal::traits < Derived >::Scalar >, const Derived > | operator/ (const Scalar &scalar) const |
Derived & | operator= (const MatrixBase &other) |
template<typename OtherDerived > | |
Derived & | operator= (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator= (const EigenBase< OtherDerived > &other) |
Copies the generic expression other into *this. | |
template<typename OtherDerived > | |
Derived & | operator= (const ReturnByValue< OtherDerived > &other) |
template<typename OtherDerived > | |
bool | operator== (const MatrixBase< OtherDerived > &other) const |
RealScalar | operatorNorm () const |
Computes the L2 operator norm. | |
const PartialPivLU< PlainObject > | partialPivLu () const |
RealReturnType | real () const |
NonConstRealReturnType | real () |
template<unsigned int UpLo> | |
SelfAdjointViewReturnType < UpLo >::Type | selfadjointView () |
template<unsigned int UpLo> | |
ConstSelfAdjointViewReturnType < UpLo >::Type | selfadjointView () const |
Derived & | setIdentity () |
Derived & | setIdentity (Index rows, Index cols) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this. | |
const MatrixFunctionReturnValue < Derived > | sin () const |
const MatrixFunctionReturnValue < Derived > | sinh () const |
const SparseView< Derived > | sparseView (const Scalar &m_reference=Scalar(0), typename NumTraits< Scalar >::Real m_epsilon=NumTraits< Scalar >::dummy_precision()) const |
RealScalar | squaredNorm () const |
RealScalar | stableNorm () const |
Scalar | trace () const |
template<unsigned int Mode> | |
TriangularViewReturnType< Mode > ::Type | triangularView () |
template<unsigned int Mode> | |
ConstTriangularViewReturnType < Mode >::Type | triangularView () const |
template<typename CustomUnaryOp > | |
const CwiseUnaryOp < CustomUnaryOp, const Derived > | unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const |
Apply a unary operator coefficient-wise. | |
template<typename CustomViewOp > | |
const CwiseUnaryView < CustomViewOp, const Derived > | unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const |
PlainObject | unitOrthogonal (void) const |
Static Public Member Functions | |
static const IdentityReturnType | Identity () |
static const IdentityReturnType | Identity (Index rows, Index cols) |
static const BasisReturnType | Unit (Index size, Index i) |
static const BasisReturnType | Unit (Index i) |
static const BasisReturnType | UnitW () |
static const BasisReturnType | UnitX () |
static const BasisReturnType | UnitY () |
static const BasisReturnType | UnitZ () |
Protected Member Functions | |
MatrixBase () | |
template<typename OtherDerived > | |
Derived & | operator+= (const ArrayBase< OtherDerived > &) |
template<typename OtherDerived > | |
Derived & | operator-= (const ArrayBase< OtherDerived > &) |
Private Member Functions | |
MatrixBase (int) | |
MatrixBase (int, int) | |
template<typename OtherDerived > | |
MatrixBase (const MatrixBase< OtherDerived > &) | |
Friends | |
const ScalarMultipleReturnType | operator* (const Scalar &scalar, const StorageBaseType &matrix) |
const CwiseUnaryOp < internal::scalar_multiple2_op < Scalar, std::complex< Scalar > >, const Derived > | operator* (const std::complex< Scalar > &scalar, const StorageBaseType &matrix) |
Base class for all dense matrices, vectors, and expressions.
This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.
Note that some methods are defined in other modules such as the LU_Module LU module for all functions related to matrix inversions.
Derived | is the derived type, e.g. a matrix type, or an expression, etc. |
When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.
template<typename Derived> void printFirstRow(const Eigen::MatrixBase<Derived>& x) { cout << x.row(0) << endl; }
This class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN
.
Definition at line 61 of file MatrixBase.h.
Definition at line 137 of file MatrixBase.h.
typedef DenseBase<Derived> MatrixBase< Derived >::Base |
Reimplemented from DenseBase< Derived >.
Reimplemented in ScaledProduct< NestedProduct >, MatrixWrapper< ExpressionType >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, Homogeneous< MatrixType, _Direction >, ProductBase< Derived, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, Minor< MatrixType >, DiagonalProduct< MatrixType, DiagonalType, ProductOrder >, and Flagged< ExpressionType, Added, Removed >.
Definition at line 73 of file MatrixBase.h.
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime> MatrixBase< Derived >::BasisReturnType |
Definition at line 145 of file MatrixBase.h.
typedef Base::CoeffReturnType MatrixBase< Derived >::CoeffReturnType |
Reimplemented from DenseBase< Derived >.
Definition at line 98 of file MatrixBase.h.
typedef Base::ColXpr MatrixBase< Derived >::ColXpr |
Reimplemented from DenseBase< Derived >.
Definition at line 101 of file MatrixBase.h.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, const CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Derived>, const Derived& >::type MatrixBase< Derived >::ConjugateReturnType |
Definition at line 39 of file MatrixBase.h.
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> MatrixBase< Derived >::ConstantReturnType |
Reimplemented from DenseBase< Derived >.
Definition at line 132 of file MatrixBase.h.
typedef const Diagonal<const Derived> MatrixBase< Derived >::ConstDiagonalReturnType |
Definition at line 228 of file MatrixBase.h.
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> MatrixBase< Derived >::ConstStartMinusOne |
Definition at line 431 of file MatrixBase.h.
typedef Base::ConstTransposeReturnType MatrixBase< Derived >::ConstTransposeReturnType |
Reimplemented from DenseBase< Derived >.
Definition at line 99 of file MatrixBase.h.
typedef Diagonal<Derived> MatrixBase< Derived >::DiagonalReturnType |
Definition at line 226 of file MatrixBase.h.
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> MatrixBase< Derived >::EigenvaluesReturnType |
Reimplemented from DenseBase< Derived >.
Definition at line 139 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const ConstStartMinusOne > MatrixBase< Derived >::HNormalizedReturnType |
Definition at line 433 of file MatrixBase.h.
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> MatrixBase< Derived >::IdentityReturnType |
Definition at line 141 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_imag_op<Scalar>, const Derived> MatrixBase< Derived >::ImagReturnType |
Definition at line 51 of file MatrixBase.h.
typedef internal::traits<Derived>::Index MatrixBase< Derived >::Index |
The type of indices.
To change this, #define
the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE
.
Reimplemented from DenseBase< Derived >.
Definition at line 68 of file MatrixBase.h.
typedef CwiseUnaryView<internal::scalar_imag_ref_op<Scalar>, Derived> MatrixBase< Derived >::NonConstImagReturnType |
Definition at line 53 of file MatrixBase.h.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryView<internal::scalar_real_ref_op<Scalar>, Derived>, Derived& >::type MatrixBase< Derived >::NonConstRealReturnType |
Definition at line 49 of file MatrixBase.h.
typedef internal::packet_traits<Scalar>::type MatrixBase< Derived >::PacketScalar |
Reimplemented from DenseBase< Derived >.
Definition at line 70 of file MatrixBase.h.
typedef Matrix<typename internal::traits<Derived>::Scalar, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime, AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor), internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime > MatrixBase< Derived >::PlainObject |
The plain matrix type corresponding to this expression.
This is not necessarily exactly the return type of eval(). In the case of plain matrices, the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either PlainObject or const PlainObject&.
Reimplemented in ScaledProduct< NestedProduct >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, ProductBase< Derived, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
Definition at line 128 of file MatrixBase.h.
typedef internal::conditional<NumTraits<Scalar>::IsComplex, const CwiseUnaryOp<internal::scalar_real_op<Scalar>, const Derived>, const Derived& >::type MatrixBase< Derived >::RealReturnType |
Definition at line 44 of file MatrixBase.h.
typedef NumTraits<Scalar>::Real MatrixBase< Derived >::RealScalar |
Reimplemented from DenseBase< Derived >.
Definition at line 71 of file MatrixBase.h.
typedef Base::RowXpr MatrixBase< Derived >::RowXpr |
Reimplemented from DenseBase< Derived >.
Definition at line 100 of file MatrixBase.h.
typedef internal::traits<Derived>::Scalar MatrixBase< Derived >::Scalar |
Reimplemented from DenseBase< Derived >.
Reimplemented in ScaledProduct< NestedProduct >.
Definition at line 69 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived> MatrixBase< Derived >::ScalarMultipleReturnType |
Definition at line 32 of file MatrixBase.h.
typedef CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, const Derived> MatrixBase< Derived >::ScalarQuotient1ReturnType |
Definition at line 34 of file MatrixBase.h.
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> MatrixBase< Derived >::SquareMatrixType |
type of the equivalent square matrix
Definition at line 109 of file MatrixBase.h.
typedef internal::stem_function<Scalar>::type MatrixBase< Derived >::StemFunction |
Definition at line 461 of file MatrixBase.h.
typedef MatrixBase MatrixBase< Derived >::StorageBaseType |
Definition at line 66 of file MatrixBase.h.
typedef internal::traits<Derived>::StorageKind MatrixBase< Derived >::StorageKind |
Reimplemented from DenseBase< Derived >.
Definition at line 67 of file MatrixBase.h.
anonymous enum |
Definition at line 426 of file MatrixBase.h.
MatrixBase< Derived >::MatrixBase | ( | ) | [inline, protected] |
Definition at line 505 of file MatrixBase.h.
MatrixBase< Derived >::MatrixBase | ( | int | ) | [explicit, private] |
MatrixBase< Derived >::MatrixBase | ( | int | , |
int | |||
) | [private] |
MatrixBase< Derived >::MatrixBase | ( | const MatrixBase< OtherDerived > & | ) | [explicit, private] |
const MatrixBase< Derived >::AdjointReturnType MatrixBase< Derived >::adjoint | ( | ) | const [inline] |
Example:
Matrix2cf m = Matrix2cf::Random(); cout << "Here is the 2x2 complex matrix m:" << endl << m << endl; cout << "Here is the adjoint of m:" << endl << m.adjoint() << endl;
Output:
m = m.adjoint(); // bug!!! caused by aliasing effect
m.adjointInPlace();
m = m.adjoint().eval();
Definition at line 249 of file Transpose.h.
void MatrixBase< Derived >::adjointInPlace | ( | ) | [inline] |
This is the "in place" version of adjoint(): it replaces *this
by its own transpose. Thus, doing
m.adjointInPlace();
has the same effect on m as doing
m = m.adjoint().eval();
and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.
Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().
*this
must be a resizable matrix.Definition at line 331 of file Transpose.h.
void MatrixBase< Derived >::applyHouseholderOnTheLeft | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Definition at line 91 of file Householder.h.
void MatrixBase< Derived >::applyHouseholderOnTheRight | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Definition at line 113 of file Householder.h.
void MatrixBase< Derived >::applyOnTheLeft | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
replaces *this
by *this
* other.
Definition at line 167 of file EigenBase.h.
void MatrixBase< Derived >::applyOnTheLeft | ( | Index | p, |
Index | q, | ||
const JacobiRotation< OtherScalar > & | j | ||
) | [inline] |
Applies the rotation in the plane j to the rows p and q of *this
, i.e., it computes B = J * B, with .
void MatrixBase< Derived >::applyOnTheRight | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
replaces *this
by *this
* other. It is equivalent to MatrixBase::operator*=()
Definition at line 159 of file EigenBase.h.
void MatrixBase< Derived >::applyOnTheRight | ( | Index | p, |
Index | q, | ||
const JacobiRotation< OtherScalar > & | j | ||
) | [inline] |
Applies the rotation in the plane j to the columns p and q of *this
, i.e., it computes B = B * J with .
ArrayWrapper<Derived> MatrixBase< Derived >::array | ( | ) | [inline] |
Definition at line 332 of file MatrixBase.h.
const ArrayWrapper<Derived> MatrixBase< Derived >::array | ( | ) | const [inline] |
Definition at line 333 of file MatrixBase.h.
const DiagonalWrapper< const Derived > MatrixBase< Derived >::asDiagonal | ( | ) | const [inline] |
Example:
cout << Matrix3i(Vector3i(2,5,6).asDiagonal()) << endl;
Output:
Definition at line 274 of file DiagonalMatrix.h.
const PermutationWrapper< const Derived > MatrixBase< Derived >::asPermutation | ( | ) | const |
Definition at line 691 of file PermutationMatrix.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> MatrixBase< Derived >::binaryExpr | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other, |
const CustomBinaryOp & | func = CustomBinaryOp() |
||
) | const [inline] |
*this
and other *this
and other The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)
Here is an example illustrating the use of custom functors:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template binary functor template<typename Scalar> struct MakeComplexOp { EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp) typedef complex<Scalar> result_type; complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); } }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random(); cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl; return 0; }
Output:
Definition at line 58 of file MatrixBase.h.
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::blueNorm | ( | ) | const [inline] |
*this
using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.
Definition at line 87 of file StableNorm.h.
internal::cast_return_type<Derived,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, const Derived> >::type MatrixBase< Derived >::cast | ( | ) | const [inline] |
The template parameter NewScalar is the type we are casting the scalars to.
Definition at line 108 of file MatrixBase.h.
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::colPivHouseholderQr | ( | ) | const |
*this
.Definition at line 526 of file ColPivHouseholderQR.h.
void MatrixBase< Derived >::computeInverseAndDetWithCheck | ( | ResultType & | inverse, |
typename ResultType::Scalar & | determinant, | ||
bool & | invertible, | ||
const RealScalar & | absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() |
||
) | const [inline] |
Computation of matrix inverse and determinant, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
inverse | Reference to the matrix in which to store the inverse. |
determinant | Reference to the variable in which to store the inverse. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; Matrix3d inverse; bool invertible; double determinant; m.computeInverseAndDetWithCheck(inverse,determinant,invertible); cout << "Its determinant is " << determinant << endl; if(invertible) { cout << "It is invertible, and its inverse is:" << endl << inverse << endl; } else { cout << "It is not invertible." << endl; }
Output:
void MatrixBase< Derived >::computeInverseWithCheck | ( | ResultType & | inverse, |
bool & | invertible, | ||
const RealScalar & | absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() |
||
) | const [inline] |
Computation of matrix inverse, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
inverse | Reference to the matrix in which to store the inverse. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; Matrix3d inverse; bool invertible; m.computeInverseWithCheck(inverse,invertible); if(invertible) { cout << "It is invertible, and its inverse is:" << endl << inverse << endl; } else { cout << "It is not invertible." << endl; }
Output:
ConjugateReturnType MatrixBase< Derived >::conjugate | ( | ) | const [inline] |
*this
.Definition at line 117 of file MatrixBase.h.
const MatrixFunctionReturnValue< Derived > MatrixBase< Derived >::cos | ( | ) | const |
Definition at line 566 of file MatrixFunction.h.
const MatrixFunctionReturnValue< Derived > MatrixBase< Derived >::cosh | ( | ) | const |
Definition at line 582 of file MatrixFunction.h.
MatrixBase< Derived >::template cross_product_return_type< OtherDerived >::type MatrixBase< Derived >::cross | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other Here is a very good explanation of cross-product: http://xkcd.com/199/
Definition at line 39 of file OrthoMethods.h.
MatrixBase< Derived >::PlainObject MatrixBase< Derived >::cross3 | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other using only the x, y, and z coefficientsThe size of *this
and other must be four. This function is especially useful when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
Definition at line 87 of file OrthoMethods.h.
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> MatrixBase< Derived >::cwiseAbs | ( | ) | const [inline] |
*this
Example:
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseAbs() << endl;
Output:
Definition at line 37 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> MatrixBase< Derived >::cwiseAbs2 | ( | ) | const [inline] |
*this
Example:
MatrixXd m(2,3); m << 2, -4, 6, -5, 1, 0; cout << m.cwiseAbs2() << endl;
Output:
Definition at line 47 of file MatrixBase.h.
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseEqual | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
MatrixXi m(2,2); m << 1, 0, 1, 1; cout << "Comparing m with identity matrix:" << endl; cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl; int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count(); cout << "Number of coefficients that are equal: " << count << endl;
Output:
Definition at line 57 of file MatrixBase.h.
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Derived> MatrixBase< Derived >::cwiseEqual | ( | const Scalar & | s | ) | const [inline] |
*this
and a scalar s Definition at line 79 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> MatrixBase< Derived >::cwiseInverse | ( | ) | const [inline] |
Example:
MatrixXd m(2,3); m << 2, 0.5, 1, 3, 0.25, 1; cout << m.cwiseInverse() << endl;
Output:
Definition at line 67 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseMax | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
Definition at line 104 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseMin | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
Definition at line 90 of file MatrixBase.h.
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseNotEqual | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
MatrixXi m(2,2); m << 1, 0, 1, 1; cout << "Comparing m with identity matrix:" << endl; cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl; int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count(); cout << "Number of coefficients that are not equal: " << count << endl;
Output:
Definition at line 76 of file MatrixBase.h.
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> MatrixBase< Derived >::cwiseQuotient | ( | const EIGEN_CURRENT_STORAGE_BASE_CLASS< OtherDerived > & | other | ) | const [inline] |
Example:
Output:
Definition at line 118 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> MatrixBase< Derived >::cwiseSqrt | ( | ) | const [inline] |
Example:
Vector3d v(1,2,4); cout << v.cwiseSqrt() << endl;
Output:
Definition at line 57 of file MatrixBase.h.
internal::traits< Derived >::Scalar MatrixBase< Derived >::determinant | ( | ) | const [inline] |
Definition at line 105 of file Determinant.h.
MatrixBase< Derived >::template DiagonalIndexReturnType< Index >::Type MatrixBase< Derived >::diagonal | ( | ) | [inline] |
*this
*this
is not required to be square.
Example:
Matrix3i m = Matrix3i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here are the coefficients on the main diagonal of m:" << endl << m.diagonal() << endl;
Output:
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl << m.diagonal<1>().transpose() << endl << m.diagonal<-2>().transpose() << endl;
Output:
Definition at line 160 of file Diagonal.h.
MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Index >::Type MatrixBase< Derived >::diagonal | ( | ) | const [inline] |
This is the const version of diagonal().
This is the const version of diagonal<int>().
Reimplemented in CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, ProductBase< Derived, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< Derived, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
Definition at line 168 of file Diagonal.h.
DiagonalIndexReturnType<Index>::Type MatrixBase< Derived >::diagonal | ( | ) |
ConstDiagonalIndexReturnType<Index>::Type MatrixBase< Derived >::diagonal | ( | ) | const |
Reimplemented in CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, ProductBase< Derived, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< Derived, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
MatrixBase< Derived >::template DiagonalIndexReturnType< Dynamic >::Type MatrixBase< Derived >::diagonal | ( | Index | index | ) | [inline] |
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl << m.diagonal(1).transpose() << endl << m.diagonal(-2).transpose() << endl;
Output:
Definition at line 186 of file Diagonal.h.
MatrixBase< Derived >::template ConstDiagonalIndexReturnType< Dynamic >::Type MatrixBase< Derived >::diagonal | ( | Index | index | ) | const [inline] |
This is the const version of diagonal(Index).
Reimplemented in CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >, ProductBase< Derived, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemmProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, true, Lhs, false, Rhs, true >, Lhs, Rhs >, ProductBase< ScaledProduct< NestedProduct >, NestedProduct::_LhsNested, NestedProduct::_RhsNested >, ProductBase< TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, OuterProduct >, Lhs, Rhs >, ProductBase< DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< GeneralProduct< Lhs, Rhs, GemvProduct >, Lhs, Rhs >, ProductBase< SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >, Lhs, Rhs >, ProductBase< TriangularProduct< Mode, false, Lhs, true, Rhs, false >, Lhs, Rhs >, ProductBase< DenseTimeSparseProduct< Lhs, Rhs >, Lhs, Rhs >, ProductBase< SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >, Lhs, Rhs >, ProductBase< SparseTimeDenseProduct< Lhs, Rhs >, Lhs, Rhs >, and ProductBase< SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >, Lhs, Rhs >.
Definition at line 194 of file Diagonal.h.
Index MatrixBase< Derived >::diagonalSize | ( | ) | const [inline] |
Definition at line 114 of file MatrixBase.h.
internal::scalar_product_traits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType MatrixBase< Derived >::dot | ( | const MatrixBase< OtherDerived > & | other | ) | const |
EIGEN_STRONG_INLINE const MatrixBase< Derived >::EIGEN_CWISE_PRODUCT_RETURN_TYPE | ( | Derived | , |
OtherDerived | |||
) | const [inline] |
Example:
Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random(); Matrix3i c = a.cwiseProduct(b); cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;
Output:
Definition at line 37 of file MatrixBase.h.
MatrixBase< Derived >::EigenvaluesReturnType MatrixBase< Derived >::eigenvalues | ( | ) | const [inline] |
Computes the eigenvalues of a matrix.
This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.
The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
MatrixXd ones = MatrixXd::Ones(3,3); VectorXcd eivals = ones.eigenvalues(); cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
Output:
Definition at line 80 of file MatrixBaseEigenvalues.h.
const MatrixExponentialReturnValue< Derived > MatrixBase< Derived >::exp | ( | ) | const |
Definition at line 345 of file MatrixExponential.h.
const ForceAlignedAccess< Derived > MatrixBase< Derived >::forceAlignedAccess | ( | ) | const [inline] |
Reimplemented from DenseBase< Derived >.
Definition at line 120 of file ForceAlignedAccess.h.
ForceAlignedAccess< Derived > MatrixBase< Derived >::forceAlignedAccess | ( | ) | [inline] |
Reimplemented from DenseBase< Derived >.
Definition at line 130 of file ForceAlignedAccess.h.
internal::add_const_on_value_type< typename internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type MatrixBase< Derived >::forceAlignedAccessIf | ( | ) | const [inline] |
Reimplemented from DenseBase< Derived >.
Definition at line 141 of file ForceAlignedAccess.h.
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type MatrixBase< Derived >::forceAlignedAccessIf | ( | ) | [inline] |
Reimplemented from DenseBase< Derived >.
Definition at line 152 of file ForceAlignedAccess.h.
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::fullPivHouseholderQr | ( | ) | const |
*this
.Definition at line 541 of file FullPivHouseholderQR.h.
const FullPivLU< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::fullPivLu | ( | ) | const [inline] |
*this
.Definition at line 749 of file FullPivLU.h.
const MatrixBase< Derived >::HNormalizedReturnType MatrixBase< Derived >::hnormalized | ( | ) | const [inline] |
*this
Example:
Output:
Definition at line 171 of file Homogeneous.h.
const HouseholderQR< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::householderQr | ( | ) | const |
*this
.Definition at line 349 of file HouseholderQR.h.
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::hypotNorm | ( | ) | const [inline] |
*this
avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.Definition at line 185 of file StableNorm.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType MatrixBase< Derived >::Identity | ( | ) | [static] |
This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.
Example:
cout << Matrix<double, 3, 4>::Identity() << endl;
Output:
Definition at line 689 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType MatrixBase< Derived >::Identity | ( | Index | rows, |
Index | cols | ||
) | [static] |
The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.
This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.
Example:
cout << MatrixXd::Identity(4, 3) << endl;
Output:
Definition at line 672 of file CwiseNullaryOp.h.
const ImagReturnType MatrixBase< Derived >::imag | ( | ) | const [inline] |
*this
.Definition at line 132 of file MatrixBase.h.
NonConstImagReturnType MatrixBase< Derived >::imag | ( | ) | [inline] |
*this
.Definition at line 188 of file MatrixBase.h.
const internal::inverse_impl< Derived > MatrixBase< Derived >::inverse | ( | ) | const [inline] |
For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Its inverse is:" << endl << m.inverse() << endl;
bool MatrixBase< Derived >::isDiagonal | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Example:
Matrix3d m = 10000 * Matrix3d::Identity(); m(0,2) = 1; cout << "Here's the matrix m:" << endl << m << endl; cout << "m.isDiagonal() returns: " << m.isDiagonal() << endl; cout << "m.isDiagonal(1e-3) returns: " << m.isDiagonal(1e-3) << endl;
Output:
Definition at line 288 of file DiagonalMatrix.h.
bool MatrixBase< Derived >::isIdentity | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Example:
Matrix3d m = Matrix3d::Identity(); m(0,2) = 1e-4; cout << "Here's the matrix m:" << endl << m << endl; cout << "m.isIdentity() returns: " << m.isIdentity() << endl; cout << "m.isIdentity(1e-3) returns: " << m.isIdentity(1e-3) << endl;
Output:
Definition at line 706 of file CwiseNullaryOp.h.
bool MatrixBase< Derived >::isLowerTriangular | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 818 of file TriangularMatrix.h.
bool MatrixBase< Derived >::isOrthogonal | ( | const MatrixBase< OtherDerived > & | other, |
RealScalar | prec = NumTraits<Scalar>::dummy_precision() |
||
) | const |
Example:
Vector3d v(1,0,0); Vector3d w(1e-4,0,1); cout << "Here's the vector v:" << endl << v << endl; cout << "Here's the vector w:" << endl << w << endl; cout << "v.isOrthogonal(w) returns: " << v.isOrthogonal(w) << endl; cout << "v.isOrthogonal(w,1e-3) returns: " << v.isOrthogonal(w,1e-3) << endl;
Output:
bool MatrixBase< Derived >::isUnitary | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
m.isUnitary()
returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.Example:
Matrix3d m = Matrix3d::Identity(); m(0,2) = 1e-4; cout << "Here's the matrix m:" << endl << m << endl; cout << "m.isUnitary() returns: " << m.isUnitary() << endl; cout << "m.isUnitary(1e-3) returns: " << m.isUnitary(1e-3) << endl;
Output:
bool MatrixBase< Derived >::isUpperTriangular | ( | RealScalar | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 793 of file TriangularMatrix.h.
JacobiSVD< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::jacobiSvd | ( | unsigned int | computationOptions = 0 | ) | const |
Definition at line 709 of file JacobiSVD.h.
Derived & MatrixBase< Derived >::lazyAssign | ( | const ProductBase< ProductDerived, Lhs, Rhs > & | other | ) |
Definition at line 281 of file ProductBase.h.
const LazyProductReturnType< Derived, OtherDerived >::Type MatrixBase< Derived >::lazyProduct | ( | const MatrixBase< OtherDerived > & | other | ) | const |
*this
and other without implicit evaluation.The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.
const LDLT< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::ldlt | ( | ) | const [inline] |
const LLT< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::llt | ( | ) | const [inline] |
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::lpNorm | ( | ) | const [inline] |
Reimplemented from DenseBase< Derived >.
void MatrixBase< Derived >::makeHouseholder | ( | EssentialPart & | essential, |
Scalar & | tau, | ||
RealScalar & | beta | ||
) | const |
Computes the elementary reflector H such that: where the transformation H is: and the vector v is:
On output:
essential | the essential part of the vector v |
tau | the scaling factor of the householder transformation |
beta | the result of H * *this |
Definition at line 62 of file Householder.h.
void MatrixBase< Derived >::makeHouseholderInPlace | ( | Scalar & | tau, |
RealScalar & | beta | ||
) |
Definition at line 39 of file Householder.h.
MatrixBase<Derived>& MatrixBase< Derived >::matrix | ( | ) | [inline] |
Definition at line 327 of file MatrixBase.h.
const MatrixBase<Derived>& MatrixBase< Derived >::matrix | ( | ) | const [inline] |
Definition at line 328 of file MatrixBase.h.
const MatrixFunctionReturnValue< Derived > MatrixBase< Derived >::matrixFunction | ( | StemFunction | f | ) | const |
Definition at line 551 of file MatrixFunction.h.
NoAlias< Derived, MatrixBase > MatrixBase< Derived >::noalias | ( | ) |
*this
with an operator= assuming no aliasing between *this
and the source expression.More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only usefull when the source expression contains a matrix product.
Here are some examples where noalias is usefull:
On the other hand the following example will lead to a wrong result:
A.noalias() = A * B;
because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:
A = A * B;
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::norm | ( | ) | const [inline] |
void MatrixBase< Derived >::normalize | ( | ) | [inline] |
Normalizes the vector, i.e. divides it by its own norm.
const MatrixBase< Derived >::PlainObject MatrixBase< Derived >::normalized | ( | ) | const [inline] |
bool MatrixBase< Derived >::operator!= | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other are not exactly equal to each other. Definition at line 311 of file MatrixBase.h.
const ScalarMultipleReturnType MatrixBase< Derived >::operator* | ( | const Scalar & | scalar | ) | const [inline] |
*this
scaled by the scalar factor scalar Definition at line 65 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> MatrixBase< Derived >::operator* | ( | const std::complex< Scalar > & | scalar | ) | const [inline] |
Overloaded for efficient real matrix times complex scalar value
Definition at line 85 of file MatrixBase.h.
MatrixBase<Derived>::ScalarMultipleReturnType MatrixBase< Derived >::operator* | ( | const UniformScaling< Scalar > & | s | ) | const |
Concatenates a linear transformation matrix and a uniform scaling
Definition at line 119 of file Geometry/Scaling.h.
const ProductReturnType< Derived, OtherDerived >::Type MatrixBase< Derived >::operator* | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other.const DiagonalProduct< Derived, DiagonalDerived, OnTheRight > MatrixBase< Derived >::operator* | ( | const DiagonalBase< DiagonalDerived > & | diagonal | ) | const [inline] |
*this
by the diagonal matrix diagonal. Definition at line 119 of file DiagonalProduct.h.
Derived & MatrixBase< Derived >::operator*= | ( | const EigenBase< OtherDerived > & | other | ) | [inline] |
replaces *this
by *this
* other.
*this
Definition at line 150 of file EigenBase.h.
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator+= | ( | const MatrixBase< OtherDerived > & | other | ) |
replaces *this
by *this
+ other.
*this
Definition at line 233 of file CwiseBinaryOp.h.
Derived& MatrixBase< Derived >::operator+= | ( | const ArrayBase< OtherDerived > & | ) | [inline, protected] |
Definition at line 513 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>, const Derived> MatrixBase< Derived >::operator- | ( | void | ) | const [inline] |
*this
Definition at line 60 of file MatrixBase.h.
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator-= | ( | const MatrixBase< OtherDerived > & | other | ) |
replaces *this
by *this
- other.
*this
Definition at line 219 of file CwiseBinaryOp.h.
Derived& MatrixBase< Derived >::operator-= | ( | const ArrayBase< OtherDerived > & | ) | [inline, protected] |
Definition at line 516 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const Derived> MatrixBase< Derived >::operator/ | ( | const Scalar & | scalar | ) | const [inline] |
*this
divided by the scalar value scalar Definition at line 77 of file MatrixBase.h.
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator= | ( | const MatrixBase< Derived > & | other | ) |
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator= | ( | const DenseBase< OtherDerived > & | other | ) |
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator= | ( | const EigenBase< OtherDerived > & | other | ) |
Copies the generic expression other into *this.
The expression must provide a (templated) evalTo(Derived& dst) const function which does the actual job. In practice, this allows any user to write its own special matrix without having to modify MatrixBase
Reimplemented from DenseBase< Derived >.
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::operator= | ( | const ReturnByValue< OtherDerived > & | other | ) |
Reimplemented from DenseBase< Derived >.
bool MatrixBase< Derived >::operator== | ( | const MatrixBase< OtherDerived > & | other | ) | const [inline] |
*this
and other are all exactly equal. Definition at line 303 of file MatrixBase.h.
MatrixBase< Derived >::RealScalar MatrixBase< Derived >::operatorNorm | ( | ) | const [inline] |
Computes the L2 operator norm.
This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix is defined to be
where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix .
The current implementation uses the eigenvalues of , as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
MatrixXd ones = MatrixXd::Ones(3,3); cout << "The operator norm of the 3x3 matrix of ones is " << ones.operatorNorm() << endl;
Output:
Definition at line 135 of file MatrixBaseEigenvalues.h.
const PartialPivLU< typename MatrixBase< Derived >::PlainObject > MatrixBase< Derived >::partialPivLu | ( | ) | const [inline] |
*this
.Definition at line 487 of file PartialPivLU.h.
RealReturnType MatrixBase< Derived >::real | ( | ) | const [inline] |
*this
.Definition at line 126 of file MatrixBase.h.
NonConstRealReturnType MatrixBase< Derived >::real | ( | ) | [inline] |
*this
.Definition at line 182 of file MatrixBase.h.
MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type MatrixBase< Derived >::selfadjointView | ( | ) |
Definition at line 320 of file SelfAdjointView.h.
MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type MatrixBase< Derived >::selfadjointView | ( | ) | const |
Definition at line 312 of file SelfAdjointView.h.
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::setIdentity | ( | ) |
Writes the identity expression (not necessarily square) into *this.
Example:
Matrix4i m = Matrix4i::Zero(); m.block<3,3>(1,0).setIdentity(); cout << m << endl;
Output:
Definition at line 761 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE Derived & MatrixBase< Derived >::setIdentity | ( | Index | rows, |
Index | cols | ||
) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
rows | the new number of rows |
cols | the new number of columns |
Example:
MatrixXf m; m.setIdentity(3, 3); cout << m << endl;
Output:
Definition at line 777 of file CwiseNullaryOp.h.
const MatrixFunctionReturnValue< Derived > MatrixBase< Derived >::sin | ( | ) | const |
Definition at line 558 of file MatrixFunction.h.
const MatrixFunctionReturnValue< Derived > MatrixBase< Derived >::sinh | ( | ) | const |
Definition at line 574 of file MatrixFunction.h.
const SparseView< Derived > MatrixBase< Derived >::sparseView | ( | const Scalar & | m_reference = Scalar(0) , |
typename NumTraits< Scalar >::Real | m_epsilon = NumTraits<Scalar>::dummy_precision() |
||
) | const |
Definition at line 103 of file SparseView.h.
EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::squaredNorm | ( | ) | const |
NumTraits< typename internal::traits< Derived >::Scalar >::Real MatrixBase< Derived >::stableNorm | ( | ) | const [inline] |
*this
avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s
2 - compute in a standard wayFor architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.
Definition at line 57 of file StableNorm.h.
EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar MatrixBase< Derived >::trace | ( | ) | const |
*this
, i.e. the sum of the coefficients on the main diagonal.*this
can be any matrix, not necessarily square.
Reimplemented from DenseBase< Derived >.
MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type MatrixBase< Derived >::triangularView | ( | ) |
The parameter Mode can have the following values: Upper
, StrictlyUpper
, UnitUpper
, Lower
, StrictlyLower
, UnitLower
.
Example:
#ifndef _MSC_VER #warning deprecated #endif /* deprecated Matrix3i m = Matrix3i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the upper-triangular matrix extracted from m:" << endl << m.part<Eigen::UpperTriangular>() << endl; cout << "Here is the strictly-upper-triangular matrix extracted from m:" << endl << m.part<Eigen::StrictlyUpperTriangular>() << endl; cout << "Here is the unit-lower-triangular matrix extracted from m:" << endl << m.part<Eigen::UnitLowerTriangular>() << endl; */
Output:
Definition at line 773 of file TriangularMatrix.h.
MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type MatrixBase< Derived >::triangularView | ( | ) | const |
This is the const version of MatrixBase::triangularView()
Definition at line 782 of file TriangularMatrix.h.
const CwiseUnaryOp<CustomUnaryOp, const Derived> MatrixBase< Derived >::unaryExpr | ( | const CustomUnaryOp & | func = CustomUnaryOp() | ) | const [inline] |
Apply a unary operator coefficient-wise.
[in] | func | Functor implementing the unary operator |
CustomUnaryOp | Type of func |
The function ptr_fun()
from the C++ standard library can be used to make functors out of normal functions.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define function to be applied coefficient-wise double ramp(double x) { if (x > 0) return x; else return 0; } int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl; return 0; }
Output:
Genuine functors allow for more possibilities, for instance it may contain a state.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template unary functor template<typename Scalar> struct CwiseClampOp { CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {} const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); } Scalar m_inf, m_sup; }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl; return 0; }
Output:
Definition at line 155 of file MatrixBase.h.
const CwiseUnaryView<CustomViewOp, const Derived> MatrixBase< Derived >::unaryViewExpr | ( | const CustomViewOp & | func = CustomViewOp() | ) | const [inline] |
The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.
Example:
#include <Eigen/Core> #include <iostream> using namespace Eigen; using namespace std; // define a custom template unary functor template<typename Scalar> struct CwiseClampOp { CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {} const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); } Scalar m_inf, m_sup; }; int main(int, char**) { Matrix4d m1 = Matrix4d::Random(); cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl; return 0; }
Output:
Definition at line 173 of file MatrixBase.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::Unit | ( | Index | size, |
Index | i | ||
) | [static] |
Definition at line 790 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::Unit | ( | Index | i | ) | [static] |
This variant is for fixed-size vector only.
Definition at line 805 of file CwiseNullaryOp.h.
MatrixBase< Derived >::PlainObject MatrixBase< Derived >::unitOrthogonal | ( | void | ) | const |
*this
The size of *this
must be at least 2. If the size is exactly 2, then the returned vector is a counter clock wise rotation of *this
, i.e., (-y,x).normalized().
Definition at line 223 of file OrthoMethods.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::UnitW | ( | ) | [static] |
Definition at line 848 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::UnitX | ( | ) | [static] |
Definition at line 818 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::UnitY | ( | ) | [static] |
Definition at line 828 of file CwiseNullaryOp.h.
EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType MatrixBase< Derived >::UnitZ | ( | ) | [static] |
Definition at line 838 of file CwiseNullaryOp.h.
const ScalarMultipleReturnType operator* | ( | const Scalar & | scalar, |
const StorageBaseType & | matrix | ||
) | [friend] |
Definition at line 92 of file MatrixBase.h.
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> operator* | ( | const std::complex< Scalar > & | scalar, |
const StorageBaseType & | matrix | ||
) | [friend] |
Definition at line 96 of file MatrixBase.h.