Dot.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #ifndef EIGEN_DOT_H
00026 #define EIGEN_DOT_H
00027 
00028 namespace internal {
00029 
00030 // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
00031 // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
00032 // looking at the static assertions. Thus this is a trick to get better compile errors.
00033 template<typename T, typename U,
00034 // the NeedToTranspose condition here is taken straight from Assign.h
00035          bool NeedToTranspose = T::IsVectorAtCompileTime
00036                 && U::IsVectorAtCompileTime
00037                 && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
00038                       |  // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
00039                          // revert to || as soon as not needed anymore.
00040                     (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
00041 >
00042 struct dot_nocheck
00043 {
00044   typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
00045   static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
00046   {
00047     return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
00048   }
00049 };
00050 
00051 template<typename T, typename U>
00052 struct dot_nocheck<T, U, true>
00053 {
00054   typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
00055   static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
00056   {
00057     return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
00058   }
00059 };
00060 
00061 } // end namespace internal
00062 
00073 template<typename Derived>
00074 template<typename OtherDerived>
00075 typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
00076 MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
00077 {
00078   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
00079   EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
00080   EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
00081   typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
00082   EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
00083 
00084   eigen_assert(size() == other.size());
00085 
00086   return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
00087 }
00088 
00089 #ifdef EIGEN2_SUPPORT
00090 
00099 template<typename Derived>
00100 template<typename OtherDerived>
00101 typename internal::traits<Derived>::Scalar
00102 MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
00103 {
00104   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
00105   EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
00106   EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
00107   EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
00108     YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00109 
00110   eigen_assert(size() == other.size());
00111 
00112   return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
00113 }
00114 #endif
00115 
00116 
00117 //---------- implementation of L2 norm and related functions ----------
00118 
00123 template<typename Derived>
00124 EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
00125 {
00126   return internal::real((*this).cwiseAbs2().sum());
00127 }
00128 
00133 template<typename Derived>
00134 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
00135 {
00136   return internal::sqrt(squaredNorm());
00137 }
00138 
00145 template<typename Derived>
00146 inline const typename MatrixBase<Derived>::PlainObject
00147 MatrixBase<Derived>::normalized() const
00148 {
00149   typedef typename internal::nested<Derived>::type Nested;
00150   typedef typename internal::remove_reference<Nested>::type _Nested;
00151   _Nested n(derived());
00152   return n / n.norm();
00153 }
00154 
00161 template<typename Derived>
00162 inline void MatrixBase<Derived>::normalize()
00163 {
00164   *this /= norm();
00165 }
00166 
00167 //---------- implementation of other norms ----------
00168 
00169 namespace internal {
00170 
00171 template<typename Derived, int p>
00172 struct lpNorm_selector
00173 {
00174   typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
00175   inline static RealScalar run(const MatrixBase<Derived>& m)
00176   {
00177     return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
00178   }
00179 };
00180 
00181 template<typename Derived>
00182 struct lpNorm_selector<Derived, 1>
00183 {
00184   inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
00185   {
00186     return m.cwiseAbs().sum();
00187   }
00188 };
00189 
00190 template<typename Derived>
00191 struct lpNorm_selector<Derived, 2>
00192 {
00193   inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
00194   {
00195     return m.norm();
00196   }
00197 };
00198 
00199 template<typename Derived>
00200 struct lpNorm_selector<Derived, Infinity>
00201 {
00202   inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
00203   {
00204     return m.cwiseAbs().maxCoeff();
00205   }
00206 };
00207 
00208 } // end namespace internal
00209 
00216 template<typename Derived>
00217 template<int p>
00218 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
00219 MatrixBase<Derived>::lpNorm() const
00220 {
00221   return internal::lpNorm_selector<Derived, p>::run(*this);
00222 }
00223 
00224 //---------- implementation of isOrthogonal / isUnitary ----------
00225 
00232 template<typename Derived>
00233 template<typename OtherDerived>
00234 bool MatrixBase<Derived>::isOrthogonal
00235 (const MatrixBase<OtherDerived>& other, RealScalar prec) const
00236 {
00237   typename internal::nested<Derived,2>::type nested(derived());
00238   typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
00239   return internal::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
00240 }
00241 
00253 template<typename Derived>
00254 bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
00255 {
00256   typename Derived::Nested nested(derived());
00257   for(Index i = 0; i < cols(); ++i)
00258   {
00259     if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
00260       return false;
00261     for(Index j = 0; j < i; ++j)
00262       if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
00263         return false;
00264   }
00265   return true;
00266 }
00267 
00268 #endif // EIGEN_DOT_H


re_vision
Author(s): Dorian Galvez-Lopez
autogenerated on Sun Jan 5 2014 11:31:02