ReactiveGrasp.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/srv/ReactiveGrasp.srv */
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "ros/service_traits.h"
00018 
00019 #include "object_manipulation_msgs/ReactiveGraspGoal.h"
00020 
00021 
00022 #include "object_manipulation_msgs/ReactiveGraspResult.h"
00023 
00024 namespace object_manipulation_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct ReactiveGraspRequest_ {
00028   typedef ReactiveGraspRequest_<ContainerAllocator> Type;
00029 
00030   ReactiveGraspRequest_()
00031   : goal()
00032   {
00033   }
00034 
00035   ReactiveGraspRequest_(const ContainerAllocator& _alloc)
00036   : goal(_alloc)
00037   {
00038   }
00039 
00040   typedef  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator>  _goal_type;
00041    ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator>  goal;
00042 
00043 
00044   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > Ptr;
00045   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator>  const> ConstPtr;
00046   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00047 }; // struct ReactiveGraspRequest
00048 typedef  ::object_manipulation_msgs::ReactiveGraspRequest_<std::allocator<void> > ReactiveGraspRequest;
00049 
00050 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest> ReactiveGraspRequestPtr;
00051 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest const> ReactiveGraspRequestConstPtr;
00052 
00053 
00054 template <class ContainerAllocator>
00055 struct ReactiveGraspResponse_ {
00056   typedef ReactiveGraspResponse_<ContainerAllocator> Type;
00057 
00058   ReactiveGraspResponse_()
00059   : result()
00060   {
00061   }
00062 
00063   ReactiveGraspResponse_(const ContainerAllocator& _alloc)
00064   : result(_alloc)
00065   {
00066   }
00067 
00068   typedef  ::object_manipulation_msgs::ReactiveGraspResult_<ContainerAllocator>  _result_type;
00069    ::object_manipulation_msgs::ReactiveGraspResult_<ContainerAllocator>  result;
00070 
00071 
00072   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > Ptr;
00073   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator>  const> ConstPtr;
00074   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00075 }; // struct ReactiveGraspResponse
00076 typedef  ::object_manipulation_msgs::ReactiveGraspResponse_<std::allocator<void> > ReactiveGraspResponse;
00077 
00078 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse> ReactiveGraspResponsePtr;
00079 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse const> ReactiveGraspResponseConstPtr;
00080 
00081 struct ReactiveGrasp
00082 {
00083 
00084 typedef ReactiveGraspRequest Request;
00085 typedef ReactiveGraspResponse Response;
00086 Request request;
00087 Response response;
00088 
00089 typedef Request RequestType;
00090 typedef Response ResponseType;
00091 }; // struct ReactiveGrasp
00092 } // namespace object_manipulation_msgs
00093 
00094 namespace ros
00095 {
00096 namespace message_traits
00097 {
00098 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > : public TrueType {};
00099 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator>  const> : public TrueType {};
00100 template<class ContainerAllocator>
00101 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00102   static const char* value() 
00103   {
00104     return "cfc8e5ca2e7695fd97bbd17c05dd9ce7";
00105   }
00106 
00107   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 
00108   static const uint64_t static_value1 = 0xcfc8e5ca2e7695fdULL;
00109   static const uint64_t static_value2 = 0x97bbd17c05dd9ce7ULL;
00110 };
00111 
00112 template<class ContainerAllocator>
00113 struct DataType< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00114   static const char* value() 
00115   {
00116     return "object_manipulation_msgs/ReactiveGraspRequest";
00117   }
00118 
00119   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 
00120 };
00121 
00122 template<class ContainerAllocator>
00123 struct Definition< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00124   static const char* value() 
00125   {
00126     return "\n\
00127 ReactiveGraspGoal goal\n\
00128 \n\
00129 \n\
00130 ================================================================================\n\
00131 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00132 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00133 # an action for reactive grasping\n\
00134 # a reactive grasp starts from the current pose of the gripper and ends\n\
00135 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00136 \n\
00137 # the name of the arm being used\n\
00138 string arm_name\n\
00139 \n\
00140 # the object to be grasped\n\
00141 GraspableObject target\n\
00142 \n\
00143 # the desired grasp pose for the hand\n\
00144 geometry_msgs/PoseStamped final_grasp_pose\n\
00145 \n\
00146 # the joint trajectory to use for the approach (if available)\n\
00147 # this trajectory is expected to start at the current pose of the gripper\n\
00148 # and end at the desired grasp pose\n\
00149 trajectory_msgs/JointTrajectory trajectory\n\
00150 \n\
00151 # the name of the support surface in the collision environment, if any\n\
00152 string collision_support_surface_name\n\
00153 \n\
00154 # The internal posture of the hand for the pre-grasp\n\
00155 # only positions are used\n\
00156 sensor_msgs/JointState pre_grasp_posture\n\
00157 \n\
00158 # The internal posture of the hand for the grasp\n\
00159 # positions and efforts are used\n\
00160 sensor_msgs/JointState grasp_posture\n\
00161 \n\
00162 # The max contact force to use while grasping (<=0 to disable)\n\
00163 float32 max_contact_force\n\
00164 \n\
00165 \n\
00166 ================================================================================\n\
00167 MSG: object_manipulation_msgs/GraspableObject\n\
00168 # an object that the object_manipulator can work on\n\
00169 \n\
00170 # a graspable object can be represented in multiple ways. This message\n\
00171 # can contain all of them. Which one is actually used is up to the receiver\n\
00172 # of this message. When adding new representations, one must be careful that\n\
00173 # they have reasonable lightweight defaults indicating that that particular\n\
00174 # representation is not available.\n\
00175 \n\
00176 # the tf frame to be used as a reference frame when combining information from\n\
00177 # the different representations below\n\
00178 string reference_frame_id\n\
00179 \n\
00180 # potential recognition results from a database of models\n\
00181 # all poses are relative to the object reference pose\n\
00182 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00183 \n\
00184 # the point cloud itself\n\
00185 sensor_msgs/PointCloud cluster\n\
00186 \n\
00187 # a region of a PointCloud2 of interest\n\
00188 object_manipulation_msgs/SceneRegion region\n\
00189 \n\
00190 # the name that this object has in the collision environment\n\
00191 string collision_name\n\
00192 ================================================================================\n\
00193 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00194 # Informs that a specific model from the Model Database has been \n\
00195 # identified at a certain location\n\
00196 \n\
00197 # the database id of the model\n\
00198 int32 model_id\n\
00199 \n\
00200 # the pose that it can be found in\n\
00201 geometry_msgs/PoseStamped pose\n\
00202 \n\
00203 # a measure of the confidence level in this detection result\n\
00204 float32 confidence\n\
00205 \n\
00206 # the name of the object detector that generated this detection result\n\
00207 string detector_name\n\
00208 \n\
00209 ================================================================================\n\
00210 MSG: geometry_msgs/PoseStamped\n\
00211 # A Pose with reference coordinate frame and timestamp\n\
00212 Header header\n\
00213 Pose pose\n\
00214 \n\
00215 ================================================================================\n\
00216 MSG: std_msgs/Header\n\
00217 # Standard metadata for higher-level stamped data types.\n\
00218 # This is generally used to communicate timestamped data \n\
00219 # in a particular coordinate frame.\n\
00220 # \n\
00221 # sequence ID: consecutively increasing ID \n\
00222 uint32 seq\n\
00223 #Two-integer timestamp that is expressed as:\n\
00224 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00225 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00226 # time-handling sugar is provided by the client library\n\
00227 time stamp\n\
00228 #Frame this data is associated with\n\
00229 # 0: no frame\n\
00230 # 1: global frame\n\
00231 string frame_id\n\
00232 \n\
00233 ================================================================================\n\
00234 MSG: geometry_msgs/Pose\n\
00235 # A representation of pose in free space, composed of postion and orientation. \n\
00236 Point position\n\
00237 Quaternion orientation\n\
00238 \n\
00239 ================================================================================\n\
00240 MSG: geometry_msgs/Point\n\
00241 # This contains the position of a point in free space\n\
00242 float64 x\n\
00243 float64 y\n\
00244 float64 z\n\
00245 \n\
00246 ================================================================================\n\
00247 MSG: geometry_msgs/Quaternion\n\
00248 # This represents an orientation in free space in quaternion form.\n\
00249 \n\
00250 float64 x\n\
00251 float64 y\n\
00252 float64 z\n\
00253 float64 w\n\
00254 \n\
00255 ================================================================================\n\
00256 MSG: sensor_msgs/PointCloud\n\
00257 # This message holds a collection of 3d points, plus optional additional\n\
00258 # information about each point.\n\
00259 \n\
00260 # Time of sensor data acquisition, coordinate frame ID.\n\
00261 Header header\n\
00262 \n\
00263 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00264 # in the frame given in the header.\n\
00265 geometry_msgs/Point32[] points\n\
00266 \n\
00267 # Each channel should have the same number of elements as points array,\n\
00268 # and the data in each channel should correspond 1:1 with each point.\n\
00269 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00270 ChannelFloat32[] channels\n\
00271 \n\
00272 ================================================================================\n\
00273 MSG: geometry_msgs/Point32\n\
00274 # This contains the position of a point in free space(with 32 bits of precision).\n\
00275 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00276 # \n\
00277 # This recommendation is to promote interoperability.  \n\
00278 #\n\
00279 # This message is designed to take up less space when sending\n\
00280 # lots of points at once, as in the case of a PointCloud.  \n\
00281 \n\
00282 float32 x\n\
00283 float32 y\n\
00284 float32 z\n\
00285 ================================================================================\n\
00286 MSG: sensor_msgs/ChannelFloat32\n\
00287 # This message is used by the PointCloud message to hold optional data\n\
00288 # associated with each point in the cloud. The length of the values\n\
00289 # array should be the same as the length of the points array in the\n\
00290 # PointCloud, and each value should be associated with the corresponding\n\
00291 # point.\n\
00292 \n\
00293 # Channel names in existing practice include:\n\
00294 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00295 #              This is opposite to usual conventions but remains for\n\
00296 #              historical reasons. The newer PointCloud2 message has no\n\
00297 #              such problem.\n\
00298 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00299 #           (R,G,B) values packed into the least significant 24 bits,\n\
00300 #           in order.\n\
00301 #   \"intensity\" - laser or pixel intensity.\n\
00302 #   \"distance\"\n\
00303 \n\
00304 # The channel name should give semantics of the channel (e.g.\n\
00305 # \"intensity\" instead of \"value\").\n\
00306 string name\n\
00307 \n\
00308 # The values array should be 1-1 with the elements of the associated\n\
00309 # PointCloud.\n\
00310 float32[] values\n\
00311 \n\
00312 ================================================================================\n\
00313 MSG: object_manipulation_msgs/SceneRegion\n\
00314 # Point cloud\n\
00315 sensor_msgs/PointCloud2 cloud\n\
00316 \n\
00317 # Indices for the region of interest\n\
00318 int32[] mask\n\
00319 \n\
00320 # One of the corresponding 2D images, if applicable\n\
00321 sensor_msgs/Image image\n\
00322 \n\
00323 # The disparity image, if applicable\n\
00324 sensor_msgs/Image disparity_image\n\
00325 \n\
00326 # Camera info for the camera that took the image\n\
00327 sensor_msgs/CameraInfo cam_info\n\
00328 \n\
00329 # a 3D region of interest for grasp planning\n\
00330 geometry_msgs/PoseStamped  roi_box_pose\n\
00331 geometry_msgs/Vector3      roi_box_dims\n\
00332 \n\
00333 ================================================================================\n\
00334 MSG: sensor_msgs/PointCloud2\n\
00335 # This message holds a collection of N-dimensional points, which may\n\
00336 # contain additional information such as normals, intensity, etc. The\n\
00337 # point data is stored as a binary blob, its layout described by the\n\
00338 # contents of the \"fields\" array.\n\
00339 \n\
00340 # The point cloud data may be organized 2d (image-like) or 1d\n\
00341 # (unordered). Point clouds organized as 2d images may be produced by\n\
00342 # camera depth sensors such as stereo or time-of-flight.\n\
00343 \n\
00344 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00345 # points).\n\
00346 Header header\n\
00347 \n\
00348 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00349 # 1 and width is the length of the point cloud.\n\
00350 uint32 height\n\
00351 uint32 width\n\
00352 \n\
00353 # Describes the channels and their layout in the binary data blob.\n\
00354 PointField[] fields\n\
00355 \n\
00356 bool    is_bigendian # Is this data bigendian?\n\
00357 uint32  point_step   # Length of a point in bytes\n\
00358 uint32  row_step     # Length of a row in bytes\n\
00359 uint8[] data         # Actual point data, size is (row_step*height)\n\
00360 \n\
00361 bool is_dense        # True if there are no invalid points\n\
00362 \n\
00363 ================================================================================\n\
00364 MSG: sensor_msgs/PointField\n\
00365 # This message holds the description of one point entry in the\n\
00366 # PointCloud2 message format.\n\
00367 uint8 INT8    = 1\n\
00368 uint8 UINT8   = 2\n\
00369 uint8 INT16   = 3\n\
00370 uint8 UINT16  = 4\n\
00371 uint8 INT32   = 5\n\
00372 uint8 UINT32  = 6\n\
00373 uint8 FLOAT32 = 7\n\
00374 uint8 FLOAT64 = 8\n\
00375 \n\
00376 string name      # Name of field\n\
00377 uint32 offset    # Offset from start of point struct\n\
00378 uint8  datatype  # Datatype enumeration, see above\n\
00379 uint32 count     # How many elements in the field\n\
00380 \n\
00381 ================================================================================\n\
00382 MSG: sensor_msgs/Image\n\
00383 # This message contains an uncompressed image\n\
00384 # (0, 0) is at top-left corner of image\n\
00385 #\n\
00386 \n\
00387 Header header        # Header timestamp should be acquisition time of image\n\
00388                      # Header frame_id should be optical frame of camera\n\
00389                      # origin of frame should be optical center of cameara\n\
00390                      # +x should point to the right in the image\n\
00391                      # +y should point down in the image\n\
00392                      # +z should point into to plane of the image\n\
00393                      # If the frame_id here and the frame_id of the CameraInfo\n\
00394                      # message associated with the image conflict\n\
00395                      # the behavior is undefined\n\
00396 \n\
00397 uint32 height         # image height, that is, number of rows\n\
00398 uint32 width          # image width, that is, number of columns\n\
00399 \n\
00400 # The legal values for encoding are in file src/image_encodings.cpp\n\
00401 # If you want to standardize a new string format, join\n\
00402 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00403 \n\
00404 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00405                       # taken from the list of strings in src/image_encodings.cpp\n\
00406 \n\
00407 uint8 is_bigendian    # is this data bigendian?\n\
00408 uint32 step           # Full row length in bytes\n\
00409 uint8[] data          # actual matrix data, size is (step * rows)\n\
00410 \n\
00411 ================================================================================\n\
00412 MSG: sensor_msgs/CameraInfo\n\
00413 # This message defines meta information for a camera. It should be in a\n\
00414 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00415 # image topics named:\n\
00416 #\n\
00417 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00418 #   image            - monochrome, distorted\n\
00419 #   image_color      - color, distorted\n\
00420 #   image_rect       - monochrome, rectified\n\
00421 #   image_rect_color - color, rectified\n\
00422 #\n\
00423 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00424 # for producing the four processed image topics from image_raw and\n\
00425 # camera_info. The meaning of the camera parameters are described in\n\
00426 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00427 #\n\
00428 # The image_geometry package provides a user-friendly interface to\n\
00429 # common operations using this meta information. If you want to, e.g.,\n\
00430 # project a 3d point into image coordinates, we strongly recommend\n\
00431 # using image_geometry.\n\
00432 #\n\
00433 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00434 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00435 # indicates an uncalibrated camera.\n\
00436 \n\
00437 #######################################################################\n\
00438 #                     Image acquisition info                          #\n\
00439 #######################################################################\n\
00440 \n\
00441 # Time of image acquisition, camera coordinate frame ID\n\
00442 Header header    # Header timestamp should be acquisition time of image\n\
00443                  # Header frame_id should be optical frame of camera\n\
00444                  # origin of frame should be optical center of camera\n\
00445                  # +x should point to the right in the image\n\
00446                  # +y should point down in the image\n\
00447                  # +z should point into the plane of the image\n\
00448 \n\
00449 \n\
00450 #######################################################################\n\
00451 #                      Calibration Parameters                         #\n\
00452 #######################################################################\n\
00453 # These are fixed during camera calibration. Their values will be the #\n\
00454 # same in all messages until the camera is recalibrated. Note that    #\n\
00455 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00456 #                                                                     #\n\
00457 # The internal parameters can be used to warp a raw (distorted) image #\n\
00458 # to:                                                                 #\n\
00459 #   1. An undistorted image (requires D and K)                        #\n\
00460 #   2. A rectified image (requires D, K, R)                           #\n\
00461 # The projection matrix P projects 3D points into the rectified image.#\n\
00462 #######################################################################\n\
00463 \n\
00464 # The image dimensions with which the camera was calibrated. Normally\n\
00465 # this will be the full camera resolution in pixels.\n\
00466 uint32 height\n\
00467 uint32 width\n\
00468 \n\
00469 # The distortion model used. Supported models are listed in\n\
00470 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00471 # simple model of radial and tangential distortion - is sufficent.\n\
00472 string distortion_model\n\
00473 \n\
00474 # The distortion parameters, size depending on the distortion model.\n\
00475 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00476 float64[] D\n\
00477 \n\
00478 # Intrinsic camera matrix for the raw (distorted) images.\n\
00479 #     [fx  0 cx]\n\
00480 # K = [ 0 fy cy]\n\
00481 #     [ 0  0  1]\n\
00482 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00483 # coordinates using the focal lengths (fx, fy) and principal point\n\
00484 # (cx, cy).\n\
00485 float64[9]  K # 3x3 row-major matrix\n\
00486 \n\
00487 # Rectification matrix (stereo cameras only)\n\
00488 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00489 # stereo image plane so that epipolar lines in both stereo images are\n\
00490 # parallel.\n\
00491 float64[9]  R # 3x3 row-major matrix\n\
00492 \n\
00493 # Projection/camera matrix\n\
00494 #     [fx'  0  cx' Tx]\n\
00495 # P = [ 0  fy' cy' Ty]\n\
00496 #     [ 0   0   1   0]\n\
00497 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00498 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00499 #  is the normal camera intrinsic matrix for the rectified image.\n\
00500 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00501 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00502 #  (cx', cy') - these may differ from the values in K.\n\
00503 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00504 #  also have R = the identity and P[1:3,1:3] = K.\n\
00505 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00506 #  position of the optical center of the second camera in the first\n\
00507 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00508 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00509 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00510 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00511 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00512 #  the rectified image is given by:\n\
00513 #  [u v w]' = P * [X Y Z 1]'\n\
00514 #         x = u / w\n\
00515 #         y = v / w\n\
00516 #  This holds for both images of a stereo pair.\n\
00517 float64[12] P # 3x4 row-major matrix\n\
00518 \n\
00519 \n\
00520 #######################################################################\n\
00521 #                      Operational Parameters                         #\n\
00522 #######################################################################\n\
00523 # These define the image region actually captured by the camera       #\n\
00524 # driver. Although they affect the geometry of the output image, they #\n\
00525 # may be changed freely without recalibrating the camera.             #\n\
00526 #######################################################################\n\
00527 \n\
00528 # Binning refers here to any camera setting which combines rectangular\n\
00529 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00530 #  resolution of the output image to\n\
00531 #  (width / binning_x) x (height / binning_y).\n\
00532 # The default values binning_x = binning_y = 0 is considered the same\n\
00533 #  as binning_x = binning_y = 1 (no subsampling).\n\
00534 uint32 binning_x\n\
00535 uint32 binning_y\n\
00536 \n\
00537 # Region of interest (subwindow of full camera resolution), given in\n\
00538 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00539 #  always denotes the same window of pixels on the camera sensor,\n\
00540 #  regardless of binning settings.\n\
00541 # The default setting of roi (all values 0) is considered the same as\n\
00542 #  full resolution (roi.width = width, roi.height = height).\n\
00543 RegionOfInterest roi\n\
00544 \n\
00545 ================================================================================\n\
00546 MSG: sensor_msgs/RegionOfInterest\n\
00547 # This message is used to specify a region of interest within an image.\n\
00548 #\n\
00549 # When used to specify the ROI setting of the camera when the image was\n\
00550 # taken, the height and width fields should either match the height and\n\
00551 # width fields for the associated image; or height = width = 0\n\
00552 # indicates that the full resolution image was captured.\n\
00553 \n\
00554 uint32 x_offset  # Leftmost pixel of the ROI\n\
00555                  # (0 if the ROI includes the left edge of the image)\n\
00556 uint32 y_offset  # Topmost pixel of the ROI\n\
00557                  # (0 if the ROI includes the top edge of the image)\n\
00558 uint32 height    # Height of ROI\n\
00559 uint32 width     # Width of ROI\n\
00560 \n\
00561 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00562 # ROI in this message. Typically this should be False if the full image\n\
00563 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00564 # used).\n\
00565 bool do_rectify\n\
00566 \n\
00567 ================================================================================\n\
00568 MSG: geometry_msgs/Vector3\n\
00569 # This represents a vector in free space. \n\
00570 \n\
00571 float64 x\n\
00572 float64 y\n\
00573 float64 z\n\
00574 ================================================================================\n\
00575 MSG: trajectory_msgs/JointTrajectory\n\
00576 Header header\n\
00577 string[] joint_names\n\
00578 JointTrajectoryPoint[] points\n\
00579 ================================================================================\n\
00580 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00581 float64[] positions\n\
00582 float64[] velocities\n\
00583 float64[] accelerations\n\
00584 duration time_from_start\n\
00585 ================================================================================\n\
00586 MSG: sensor_msgs/JointState\n\
00587 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00588 #\n\
00589 # The state of each joint (revolute or prismatic) is defined by:\n\
00590 #  * the position of the joint (rad or m),\n\
00591 #  * the velocity of the joint (rad/s or m/s) and \n\
00592 #  * the effort that is applied in the joint (Nm or N).\n\
00593 #\n\
00594 # Each joint is uniquely identified by its name\n\
00595 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00596 # in one message have to be recorded at the same time.\n\
00597 #\n\
00598 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00599 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00600 # effort associated with them, you can leave the effort array empty. \n\
00601 #\n\
00602 # All arrays in this message should have the same size, or be empty.\n\
00603 # This is the only way to uniquely associate the joint name with the correct\n\
00604 # states.\n\
00605 \n\
00606 \n\
00607 Header header\n\
00608 \n\
00609 string[] name\n\
00610 float64[] position\n\
00611 float64[] velocity\n\
00612 float64[] effort\n\
00613 \n\
00614 ";
00615   }
00616 
00617   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 
00618 };
00619 
00620 } // namespace message_traits
00621 } // namespace ros
00622 
00623 
00624 namespace ros
00625 {
00626 namespace message_traits
00627 {
00628 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > : public TrueType {};
00629 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator>  const> : public TrueType {};
00630 template<class ContainerAllocator>
00631 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
00632   static const char* value() 
00633   {
00634     return "eb66ddf1bad009330070ddb3ebea8f76";
00635   }
00636 
00637   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 
00638   static const uint64_t static_value1 = 0xeb66ddf1bad00933ULL;
00639   static const uint64_t static_value2 = 0x0070ddb3ebea8f76ULL;
00640 };
00641 
00642 template<class ContainerAllocator>
00643 struct DataType< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
00644   static const char* value() 
00645   {
00646     return "object_manipulation_msgs/ReactiveGraspResponse";
00647   }
00648 
00649   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 
00650 };
00651 
00652 template<class ContainerAllocator>
00653 struct Definition< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
00654   static const char* value() 
00655   {
00656     return "\n\
00657 \n\
00658 ReactiveGraspResult result\n\
00659 \n\
00660 ================================================================================\n\
00661 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
00662 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00663 \n\
00664 # the result of the reactive grasp attempt\n\
00665 \n\
00666 ManipulationResult manipulation_result\n\
00667 \n\
00668 \n\
00669 ================================================================================\n\
00670 MSG: object_manipulation_msgs/ManipulationResult\n\
00671 # Result codes for manipulation tasks\n\
00672 \n\
00673 # task completed as expected\n\
00674 # generally means you can proceed as planned\n\
00675 int32 SUCCESS = 1\n\
00676 \n\
00677 # task not possible (e.g. out of reach or obstacles in the way)\n\
00678 # generally means that the world was not disturbed, so you can try another task\n\
00679 int32 UNFEASIBLE = -1\n\
00680 \n\
00681 # task was thought possible, but failed due to unexpected events during execution\n\
00682 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00683 # your sensed world model before proceeding to another task\n\
00684 int32 FAILED = -2\n\
00685 \n\
00686 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00687 # generally requires human attention\n\
00688 int32 ERROR = -3\n\
00689 \n\
00690 # means that at some point during execution we ended up in a state that the collision-aware\n\
00691 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00692 # probably need a new collision map to move the arm out of the stuck position\n\
00693 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00694 \n\
00695 # specific to grasp actions\n\
00696 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00697 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00698 int32 LIFT_FAILED = -5\n\
00699 \n\
00700 # specific to place actions\n\
00701 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00702 # it is likely that the collision environment will see collisions between the hand and the object\n\
00703 int32 RETREAT_FAILED = -6\n\
00704 \n\
00705 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00706 int32 CANCELLED = -7\n\
00707 \n\
00708 # the actual value of this error code\n\
00709 int32 value\n\
00710 \n\
00711 ";
00712   }
00713 
00714   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 
00715 };
00716 
00717 template<class ContainerAllocator> struct IsFixedSize< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > : public TrueType {};
00718 } // namespace message_traits
00719 } // namespace ros
00720 
00721 namespace ros
00722 {
00723 namespace serialization
00724 {
00725 
00726 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> >
00727 {
00728   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00729   {
00730     stream.next(m.goal);
00731   }
00732 
00733   ROS_DECLARE_ALLINONE_SERIALIZER;
00734 }; // struct ReactiveGraspRequest_
00735 } // namespace serialization
00736 } // namespace ros
00737 
00738 
00739 namespace ros
00740 {
00741 namespace serialization
00742 {
00743 
00744 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> >
00745 {
00746   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00747   {
00748     stream.next(m.result);
00749   }
00750 
00751   ROS_DECLARE_ALLINONE_SERIALIZER;
00752 }; // struct ReactiveGraspResponse_
00753 } // namespace serialization
00754 } // namespace ros
00755 
00756 namespace ros
00757 {
00758 namespace service_traits
00759 {
00760 template<>
00761 struct MD5Sum<object_manipulation_msgs::ReactiveGrasp> {
00762   static const char* value() 
00763   {
00764     return "4d5c2e842d2f6dbd7fc4253a66c2bb5f";
00765   }
00766 
00767   static const char* value(const object_manipulation_msgs::ReactiveGrasp&) { return value(); } 
00768 };
00769 
00770 template<>
00771 struct DataType<object_manipulation_msgs::ReactiveGrasp> {
00772   static const char* value() 
00773   {
00774     return "object_manipulation_msgs/ReactiveGrasp";
00775   }
00776 
00777   static const char* value(const object_manipulation_msgs::ReactiveGrasp&) { return value(); } 
00778 };
00779 
00780 template<class ContainerAllocator>
00781 struct MD5Sum<object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00782   static const char* value() 
00783   {
00784     return "4d5c2e842d2f6dbd7fc4253a66c2bb5f";
00785   }
00786 
00787   static const char* value(const object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 
00788 };
00789 
00790 template<class ContainerAllocator>
00791 struct DataType<object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00792   static const char* value() 
00793   {
00794     return "object_manipulation_msgs/ReactiveGrasp";
00795   }
00796 
00797   static const char* value(const object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); } 
00798 };
00799 
00800 template<class ContainerAllocator>
00801 struct MD5Sum<object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
00802   static const char* value() 
00803   {
00804     return "4d5c2e842d2f6dbd7fc4253a66c2bb5f";
00805   }
00806 
00807   static const char* value(const object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 
00808 };
00809 
00810 template<class ContainerAllocator>
00811 struct DataType<object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
00812   static const char* value() 
00813   {
00814     return "object_manipulation_msgs/ReactiveGrasp";
00815   }
00816 
00817   static const char* value(const object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); } 
00818 };
00819 
00820 } // namespace service_traits
00821 } // namespace ros
00822 
00823 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
00824 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12