00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/PlaceGoal.h"
00020
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct PlaceActionGoal_ {
00025 typedef PlaceActionGoal_<ContainerAllocator> Type;
00026
00027 PlaceActionGoal_()
00028 : header()
00029 , goal_id()
00030 , goal()
00031 {
00032 }
00033
00034 PlaceActionGoal_(const ContainerAllocator& _alloc)
00035 : header(_alloc)
00036 , goal_id(_alloc)
00037 , goal(_alloc)
00038 {
00039 }
00040
00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00042 ::std_msgs::Header_<ContainerAllocator> header;
00043
00044 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00045 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00046
00047 typedef ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> _goal_type;
00048 ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> goal;
00049
00050
00051 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > Ptr;
00052 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> const> ConstPtr;
00053 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 };
00055 typedef ::object_manipulation_msgs::PlaceActionGoal_<std::allocator<void> > PlaceActionGoal;
00056
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal> PlaceActionGoalPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceActionGoal const> PlaceActionGoalConstPtr;
00059
00060
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> & v)
00063 {
00064 ros::message_operations::Printer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> >::stream(s, "", v);
00065 return s;}
00066
00067 }
00068
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > {
00077 static const char* value()
00078 {
00079 return "f93c352752526d02221a81b54b167175";
00080 }
00081
00082 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); }
00083 static const uint64_t static_value1 = 0xf93c352752526d02ULL;
00084 static const uint64_t static_value2 = 0x221a81b54b167175ULL;
00085 };
00086
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > {
00089 static const char* value()
00090 {
00091 return "object_manipulation_msgs/PlaceActionGoal";
00092 }
00093
00094 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); }
00095 };
00096
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > {
00099 static const char* value()
00100 {
00101 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalID goal_id\n\
00105 PlaceGoal goal\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalID\n\
00127 # The stamp should store the time at which this goal was requested.\n\
00128 # It is used by an action server when it tries to preempt all\n\
00129 # goals that were requested before a certain time\n\
00130 time stamp\n\
00131 \n\
00132 # The id provides a way to associate feedback and\n\
00133 # result message with specific goal requests. The id\n\
00134 # specified must be unique.\n\
00135 string id\n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: object_manipulation_msgs/PlaceGoal\n\
00140 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00141 # An action for placing an object\n\
00142 \n\
00143 # which arm to be used for grasping\n\
00144 string arm_name\n\
00145 \n\
00146 # a list of possible transformations for placing the object\n\
00147 geometry_msgs/PoseStamped[] place_locations\n\
00148 \n\
00149 # the grasp that has been executed on this object\n\
00150 Grasp grasp\n\
00151 \n\
00152 # Note that, in general place_location is intended to show where you want the object\n\
00153 # to go in the world, while grasp is meant to show how the object is grasped\n\
00154 # (where the hand is relative to the object).\n\
00155 \n\
00156 # Ultimately, what matters is where the hand goes when you place the object; this\n\
00157 # is computed internally by simply multiplying the two transforms above.\n\
00158 \n\
00159 # If you already know where you want the hand to go in the world when placing, feel\n\
00160 # free to put that in the place_location, and make the transform in grasp equal to\n\
00161 # identity.\n\
00162 \n\
00163 # how far the retreat should ideally be away from the place location\n\
00164 float32 desired_retreat_distance\n\
00165 \n\
00166 # the min distance between the retreat and the place location that must actually be feasible \n\
00167 # for the place not to be rejected\n\
00168 float32 min_retreat_distance\n\
00169 \n\
00170 # how the place location should be approached\n\
00171 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00172 # or the gripper_frame specified in your hand description file\n\
00173 GripperTranslation approach\n\
00174 \n\
00175 # the name that the target object has in the collision map\n\
00176 # can be left empty if no name is available\n\
00177 string collision_object_name\n\
00178 \n\
00179 # the name that the support surface (e.g. table) has in the collision map\n\
00180 # can be left empty if no name is available\n\
00181 string collision_support_surface_name\n\
00182 \n\
00183 # whether collisions between the gripper and the support surface should be acceptable\n\
00184 # during move from pre-place to place and during retreat. Collisions when moving to the\n\
00185 # pre-place location are still not allowed even if this is set to true.\n\
00186 bool allow_gripper_support_collision\n\
00187 \n\
00188 # whether reactive placing based on tactile sensors should be used\n\
00189 bool use_reactive_place\n\
00190 \n\
00191 # how much the object should be padded by when deciding if the grasp\n\
00192 # location is freasible or not\n\
00193 float64 place_padding\n\
00194 \n\
00195 # set this to true if you only want to query the manipulation pipeline as to what \n\
00196 # place locations it thinks are feasible, without actually executing them. If this is set to \n\
00197 # true, the atempted_location_results field of the result will be populated, but no arm \n\
00198 # movement will be attempted\n\
00199 bool only_perform_feasibility_test\n\
00200 \n\
00201 # OPTIONAL (These will not have to be filled out most of the time)\n\
00202 # constraints to be imposed on every point in the motion of the arm\n\
00203 arm_navigation_msgs/Constraints path_constraints\n\
00204 \n\
00205 # OPTIONAL (These will not have to be filled out most of the time)\n\
00206 # additional collision operations to be used for every arm movement performed\n\
00207 # during placing. Note that these will be added on top of (and thus overide) other \n\
00208 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00209 # with care and only if special behaviors are desired.\n\
00210 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00211 \n\
00212 # OPTIONAL (These will not have to be filled out most of the time)\n\
00213 # additional link paddings to be used for every arm movement performed\n\
00214 # during placing. Note that these will be added on top of (and thus overide) other \n\
00215 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00216 # with care and only if special behaviors are desired.\n\
00217 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00218 \n\
00219 \n\
00220 ================================================================================\n\
00221 MSG: geometry_msgs/PoseStamped\n\
00222 # A Pose with reference coordinate frame and timestamp\n\
00223 Header header\n\
00224 Pose pose\n\
00225 \n\
00226 ================================================================================\n\
00227 MSG: geometry_msgs/Pose\n\
00228 # A representation of pose in free space, composed of postion and orientation. \n\
00229 Point position\n\
00230 Quaternion orientation\n\
00231 \n\
00232 ================================================================================\n\
00233 MSG: geometry_msgs/Point\n\
00234 # This contains the position of a point in free space\n\
00235 float64 x\n\
00236 float64 y\n\
00237 float64 z\n\
00238 \n\
00239 ================================================================================\n\
00240 MSG: geometry_msgs/Quaternion\n\
00241 # This represents an orientation in free space in quaternion form.\n\
00242 \n\
00243 float64 x\n\
00244 float64 y\n\
00245 float64 z\n\
00246 float64 w\n\
00247 \n\
00248 ================================================================================\n\
00249 MSG: object_manipulation_msgs/Grasp\n\
00250 \n\
00251 # The internal posture of the hand for the pre-grasp\n\
00252 # only positions are used\n\
00253 sensor_msgs/JointState pre_grasp_posture\n\
00254 \n\
00255 # The internal posture of the hand for the grasp\n\
00256 # positions and efforts are used\n\
00257 sensor_msgs/JointState grasp_posture\n\
00258 \n\
00259 # The position of the end-effector for the grasp relative to a reference frame \n\
00260 # (that is always specified elsewhere, not in this message)\n\
00261 geometry_msgs/Pose grasp_pose\n\
00262 \n\
00263 # The estimated probability of success for this grasp\n\
00264 float64 success_probability\n\
00265 \n\
00266 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00267 bool cluster_rep\n\
00268 \n\
00269 # how far the pre-grasp should ideally be away from the grasp\n\
00270 float32 desired_approach_distance\n\
00271 \n\
00272 # how much distance between pre-grasp and grasp must actually be feasible \n\
00273 # for the grasp not to be rejected\n\
00274 float32 min_approach_distance\n\
00275 \n\
00276 # an optional list of obstacles that we have semantic information about\n\
00277 # and that we expect might move in the course of executing this grasp\n\
00278 # the grasp planner is expected to make sure they move in an OK way; during\n\
00279 # execution, grasp executors will not check for collisions against these objects\n\
00280 GraspableObject[] moved_obstacles\n\
00281 \n\
00282 ================================================================================\n\
00283 MSG: sensor_msgs/JointState\n\
00284 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00285 #\n\
00286 # The state of each joint (revolute or prismatic) is defined by:\n\
00287 # * the position of the joint (rad or m),\n\
00288 # * the velocity of the joint (rad/s or m/s) and \n\
00289 # * the effort that is applied in the joint (Nm or N).\n\
00290 #\n\
00291 # Each joint is uniquely identified by its name\n\
00292 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00293 # in one message have to be recorded at the same time.\n\
00294 #\n\
00295 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00296 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00297 # effort associated with them, you can leave the effort array empty. \n\
00298 #\n\
00299 # All arrays in this message should have the same size, or be empty.\n\
00300 # This is the only way to uniquely associate the joint name with the correct\n\
00301 # states.\n\
00302 \n\
00303 \n\
00304 Header header\n\
00305 \n\
00306 string[] name\n\
00307 float64[] position\n\
00308 float64[] velocity\n\
00309 float64[] effort\n\
00310 \n\
00311 ================================================================================\n\
00312 MSG: object_manipulation_msgs/GraspableObject\n\
00313 # an object that the object_manipulator can work on\n\
00314 \n\
00315 # a graspable object can be represented in multiple ways. This message\n\
00316 # can contain all of them. Which one is actually used is up to the receiver\n\
00317 # of this message. When adding new representations, one must be careful that\n\
00318 # they have reasonable lightweight defaults indicating that that particular\n\
00319 # representation is not available.\n\
00320 \n\
00321 # the tf frame to be used as a reference frame when combining information from\n\
00322 # the different representations below\n\
00323 string reference_frame_id\n\
00324 \n\
00325 # potential recognition results from a database of models\n\
00326 # all poses are relative to the object reference pose\n\
00327 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00328 \n\
00329 # the point cloud itself\n\
00330 sensor_msgs/PointCloud cluster\n\
00331 \n\
00332 # a region of a PointCloud2 of interest\n\
00333 object_manipulation_msgs/SceneRegion region\n\
00334 \n\
00335 # the name that this object has in the collision environment\n\
00336 string collision_name\n\
00337 ================================================================================\n\
00338 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00339 # Informs that a specific model from the Model Database has been \n\
00340 # identified at a certain location\n\
00341 \n\
00342 # the database id of the model\n\
00343 int32 model_id\n\
00344 \n\
00345 # the pose that it can be found in\n\
00346 geometry_msgs/PoseStamped pose\n\
00347 \n\
00348 # a measure of the confidence level in this detection result\n\
00349 float32 confidence\n\
00350 \n\
00351 # the name of the object detector that generated this detection result\n\
00352 string detector_name\n\
00353 \n\
00354 ================================================================================\n\
00355 MSG: sensor_msgs/PointCloud\n\
00356 # This message holds a collection of 3d points, plus optional additional\n\
00357 # information about each point.\n\
00358 \n\
00359 # Time of sensor data acquisition, coordinate frame ID.\n\
00360 Header header\n\
00361 \n\
00362 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00363 # in the frame given in the header.\n\
00364 geometry_msgs/Point32[] points\n\
00365 \n\
00366 # Each channel should have the same number of elements as points array,\n\
00367 # and the data in each channel should correspond 1:1 with each point.\n\
00368 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00369 ChannelFloat32[] channels\n\
00370 \n\
00371 ================================================================================\n\
00372 MSG: geometry_msgs/Point32\n\
00373 # This contains the position of a point in free space(with 32 bits of precision).\n\
00374 # It is recommeded to use Point wherever possible instead of Point32. \n\
00375 # \n\
00376 # This recommendation is to promote interoperability. \n\
00377 #\n\
00378 # This message is designed to take up less space when sending\n\
00379 # lots of points at once, as in the case of a PointCloud. \n\
00380 \n\
00381 float32 x\n\
00382 float32 y\n\
00383 float32 z\n\
00384 ================================================================================\n\
00385 MSG: sensor_msgs/ChannelFloat32\n\
00386 # This message is used by the PointCloud message to hold optional data\n\
00387 # associated with each point in the cloud. The length of the values\n\
00388 # array should be the same as the length of the points array in the\n\
00389 # PointCloud, and each value should be associated with the corresponding\n\
00390 # point.\n\
00391 \n\
00392 # Channel names in existing practice include:\n\
00393 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00394 # This is opposite to usual conventions but remains for\n\
00395 # historical reasons. The newer PointCloud2 message has no\n\
00396 # such problem.\n\
00397 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00398 # (R,G,B) values packed into the least significant 24 bits,\n\
00399 # in order.\n\
00400 # \"intensity\" - laser or pixel intensity.\n\
00401 # \"distance\"\n\
00402 \n\
00403 # The channel name should give semantics of the channel (e.g.\n\
00404 # \"intensity\" instead of \"value\").\n\
00405 string name\n\
00406 \n\
00407 # The values array should be 1-1 with the elements of the associated\n\
00408 # PointCloud.\n\
00409 float32[] values\n\
00410 \n\
00411 ================================================================================\n\
00412 MSG: object_manipulation_msgs/SceneRegion\n\
00413 # Point cloud\n\
00414 sensor_msgs/PointCloud2 cloud\n\
00415 \n\
00416 # Indices for the region of interest\n\
00417 int32[] mask\n\
00418 \n\
00419 # One of the corresponding 2D images, if applicable\n\
00420 sensor_msgs/Image image\n\
00421 \n\
00422 # The disparity image, if applicable\n\
00423 sensor_msgs/Image disparity_image\n\
00424 \n\
00425 # Camera info for the camera that took the image\n\
00426 sensor_msgs/CameraInfo cam_info\n\
00427 \n\
00428 # a 3D region of interest for grasp planning\n\
00429 geometry_msgs/PoseStamped roi_box_pose\n\
00430 geometry_msgs/Vector3 roi_box_dims\n\
00431 \n\
00432 ================================================================================\n\
00433 MSG: sensor_msgs/PointCloud2\n\
00434 # This message holds a collection of N-dimensional points, which may\n\
00435 # contain additional information such as normals, intensity, etc. The\n\
00436 # point data is stored as a binary blob, its layout described by the\n\
00437 # contents of the \"fields\" array.\n\
00438 \n\
00439 # The point cloud data may be organized 2d (image-like) or 1d\n\
00440 # (unordered). Point clouds organized as 2d images may be produced by\n\
00441 # camera depth sensors such as stereo or time-of-flight.\n\
00442 \n\
00443 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00444 # points).\n\
00445 Header header\n\
00446 \n\
00447 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00448 # 1 and width is the length of the point cloud.\n\
00449 uint32 height\n\
00450 uint32 width\n\
00451 \n\
00452 # Describes the channels and their layout in the binary data blob.\n\
00453 PointField[] fields\n\
00454 \n\
00455 bool is_bigendian # Is this data bigendian?\n\
00456 uint32 point_step # Length of a point in bytes\n\
00457 uint32 row_step # Length of a row in bytes\n\
00458 uint8[] data # Actual point data, size is (row_step*height)\n\
00459 \n\
00460 bool is_dense # True if there are no invalid points\n\
00461 \n\
00462 ================================================================================\n\
00463 MSG: sensor_msgs/PointField\n\
00464 # This message holds the description of one point entry in the\n\
00465 # PointCloud2 message format.\n\
00466 uint8 INT8 = 1\n\
00467 uint8 UINT8 = 2\n\
00468 uint8 INT16 = 3\n\
00469 uint8 UINT16 = 4\n\
00470 uint8 INT32 = 5\n\
00471 uint8 UINT32 = 6\n\
00472 uint8 FLOAT32 = 7\n\
00473 uint8 FLOAT64 = 8\n\
00474 \n\
00475 string name # Name of field\n\
00476 uint32 offset # Offset from start of point struct\n\
00477 uint8 datatype # Datatype enumeration, see above\n\
00478 uint32 count # How many elements in the field\n\
00479 \n\
00480 ================================================================================\n\
00481 MSG: sensor_msgs/Image\n\
00482 # This message contains an uncompressed image\n\
00483 # (0, 0) is at top-left corner of image\n\
00484 #\n\
00485 \n\
00486 Header header # Header timestamp should be acquisition time of image\n\
00487 # Header frame_id should be optical frame of camera\n\
00488 # origin of frame should be optical center of cameara\n\
00489 # +x should point to the right in the image\n\
00490 # +y should point down in the image\n\
00491 # +z should point into to plane of the image\n\
00492 # If the frame_id here and the frame_id of the CameraInfo\n\
00493 # message associated with the image conflict\n\
00494 # the behavior is undefined\n\
00495 \n\
00496 uint32 height # image height, that is, number of rows\n\
00497 uint32 width # image width, that is, number of columns\n\
00498 \n\
00499 # The legal values for encoding are in file src/image_encodings.cpp\n\
00500 # If you want to standardize a new string format, join\n\
00501 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00502 \n\
00503 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00504 # taken from the list of strings in src/image_encodings.cpp\n\
00505 \n\
00506 uint8 is_bigendian # is this data bigendian?\n\
00507 uint32 step # Full row length in bytes\n\
00508 uint8[] data # actual matrix data, size is (step * rows)\n\
00509 \n\
00510 ================================================================================\n\
00511 MSG: sensor_msgs/CameraInfo\n\
00512 # This message defines meta information for a camera. It should be in a\n\
00513 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00514 # image topics named:\n\
00515 #\n\
00516 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00517 # image - monochrome, distorted\n\
00518 # image_color - color, distorted\n\
00519 # image_rect - monochrome, rectified\n\
00520 # image_rect_color - color, rectified\n\
00521 #\n\
00522 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00523 # for producing the four processed image topics from image_raw and\n\
00524 # camera_info. The meaning of the camera parameters are described in\n\
00525 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00526 #\n\
00527 # The image_geometry package provides a user-friendly interface to\n\
00528 # common operations using this meta information. If you want to, e.g.,\n\
00529 # project a 3d point into image coordinates, we strongly recommend\n\
00530 # using image_geometry.\n\
00531 #\n\
00532 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00533 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00534 # indicates an uncalibrated camera.\n\
00535 \n\
00536 #######################################################################\n\
00537 # Image acquisition info #\n\
00538 #######################################################################\n\
00539 \n\
00540 # Time of image acquisition, camera coordinate frame ID\n\
00541 Header header # Header timestamp should be acquisition time of image\n\
00542 # Header frame_id should be optical frame of camera\n\
00543 # origin of frame should be optical center of camera\n\
00544 # +x should point to the right in the image\n\
00545 # +y should point down in the image\n\
00546 # +z should point into the plane of the image\n\
00547 \n\
00548 \n\
00549 #######################################################################\n\
00550 # Calibration Parameters #\n\
00551 #######################################################################\n\
00552 # These are fixed during camera calibration. Their values will be the #\n\
00553 # same in all messages until the camera is recalibrated. Note that #\n\
00554 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00555 # #\n\
00556 # The internal parameters can be used to warp a raw (distorted) image #\n\
00557 # to: #\n\
00558 # 1. An undistorted image (requires D and K) #\n\
00559 # 2. A rectified image (requires D, K, R) #\n\
00560 # The projection matrix P projects 3D points into the rectified image.#\n\
00561 #######################################################################\n\
00562 \n\
00563 # The image dimensions with which the camera was calibrated. Normally\n\
00564 # this will be the full camera resolution in pixels.\n\
00565 uint32 height\n\
00566 uint32 width\n\
00567 \n\
00568 # The distortion model used. Supported models are listed in\n\
00569 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00570 # simple model of radial and tangential distortion - is sufficent.\n\
00571 string distortion_model\n\
00572 \n\
00573 # The distortion parameters, size depending on the distortion model.\n\
00574 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00575 float64[] D\n\
00576 \n\
00577 # Intrinsic camera matrix for the raw (distorted) images.\n\
00578 # [fx 0 cx]\n\
00579 # K = [ 0 fy cy]\n\
00580 # [ 0 0 1]\n\
00581 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00582 # coordinates using the focal lengths (fx, fy) and principal point\n\
00583 # (cx, cy).\n\
00584 float64[9] K # 3x3 row-major matrix\n\
00585 \n\
00586 # Rectification matrix (stereo cameras only)\n\
00587 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00588 # stereo image plane so that epipolar lines in both stereo images are\n\
00589 # parallel.\n\
00590 float64[9] R # 3x3 row-major matrix\n\
00591 \n\
00592 # Projection/camera matrix\n\
00593 # [fx' 0 cx' Tx]\n\
00594 # P = [ 0 fy' cy' Ty]\n\
00595 # [ 0 0 1 0]\n\
00596 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00597 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00598 # is the normal camera intrinsic matrix for the rectified image.\n\
00599 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00600 # coordinates using the focal lengths (fx', fy') and principal point\n\
00601 # (cx', cy') - these may differ from the values in K.\n\
00602 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00603 # also have R = the identity and P[1:3,1:3] = K.\n\
00604 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00605 # position of the optical center of the second camera in the first\n\
00606 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00607 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00608 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00609 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00610 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00611 # the rectified image is given by:\n\
00612 # [u v w]' = P * [X Y Z 1]'\n\
00613 # x = u / w\n\
00614 # y = v / w\n\
00615 # This holds for both images of a stereo pair.\n\
00616 float64[12] P # 3x4 row-major matrix\n\
00617 \n\
00618 \n\
00619 #######################################################################\n\
00620 # Operational Parameters #\n\
00621 #######################################################################\n\
00622 # These define the image region actually captured by the camera #\n\
00623 # driver. Although they affect the geometry of the output image, they #\n\
00624 # may be changed freely without recalibrating the camera. #\n\
00625 #######################################################################\n\
00626 \n\
00627 # Binning refers here to any camera setting which combines rectangular\n\
00628 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00629 # resolution of the output image to\n\
00630 # (width / binning_x) x (height / binning_y).\n\
00631 # The default values binning_x = binning_y = 0 is considered the same\n\
00632 # as binning_x = binning_y = 1 (no subsampling).\n\
00633 uint32 binning_x\n\
00634 uint32 binning_y\n\
00635 \n\
00636 # Region of interest (subwindow of full camera resolution), given in\n\
00637 # full resolution (unbinned) image coordinates. A particular ROI\n\
00638 # always denotes the same window of pixels on the camera sensor,\n\
00639 # regardless of binning settings.\n\
00640 # The default setting of roi (all values 0) is considered the same as\n\
00641 # full resolution (roi.width = width, roi.height = height).\n\
00642 RegionOfInterest roi\n\
00643 \n\
00644 ================================================================================\n\
00645 MSG: sensor_msgs/RegionOfInterest\n\
00646 # This message is used to specify a region of interest within an image.\n\
00647 #\n\
00648 # When used to specify the ROI setting of the camera when the image was\n\
00649 # taken, the height and width fields should either match the height and\n\
00650 # width fields for the associated image; or height = width = 0\n\
00651 # indicates that the full resolution image was captured.\n\
00652 \n\
00653 uint32 x_offset # Leftmost pixel of the ROI\n\
00654 # (0 if the ROI includes the left edge of the image)\n\
00655 uint32 y_offset # Topmost pixel of the ROI\n\
00656 # (0 if the ROI includes the top edge of the image)\n\
00657 uint32 height # Height of ROI\n\
00658 uint32 width # Width of ROI\n\
00659 \n\
00660 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00661 # ROI in this message. Typically this should be False if the full image\n\
00662 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00663 # used).\n\
00664 bool do_rectify\n\
00665 \n\
00666 ================================================================================\n\
00667 MSG: geometry_msgs/Vector3\n\
00668 # This represents a vector in free space. \n\
00669 \n\
00670 float64 x\n\
00671 float64 y\n\
00672 float64 z\n\
00673 ================================================================================\n\
00674 MSG: object_manipulation_msgs/GripperTranslation\n\
00675 # defines a translation for the gripper, used in pickup or place tasks\n\
00676 # for example for lifting an object off a table or approaching the table for placing\n\
00677 \n\
00678 # the direction of the translation\n\
00679 geometry_msgs/Vector3Stamped direction\n\
00680 \n\
00681 # the desired translation distance\n\
00682 float32 desired_distance\n\
00683 \n\
00684 # the min distance that must be considered feasible before the\n\
00685 # grasp is even attempted\n\
00686 float32 min_distance\n\
00687 ================================================================================\n\
00688 MSG: geometry_msgs/Vector3Stamped\n\
00689 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00690 Header header\n\
00691 Vector3 vector\n\
00692 \n\
00693 ================================================================================\n\
00694 MSG: arm_navigation_msgs/Constraints\n\
00695 # This message contains a list of motion planning constraints.\n\
00696 \n\
00697 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00698 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00699 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00700 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00701 \n\
00702 ================================================================================\n\
00703 MSG: arm_navigation_msgs/JointConstraint\n\
00704 # Constrain the position of a joint to be within a certain bound\n\
00705 string joint_name\n\
00706 \n\
00707 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00708 float64 position\n\
00709 float64 tolerance_above\n\
00710 float64 tolerance_below\n\
00711 \n\
00712 # A weighting factor for this constraint\n\
00713 float64 weight\n\
00714 ================================================================================\n\
00715 MSG: arm_navigation_msgs/PositionConstraint\n\
00716 # This message contains the definition of a position constraint.\n\
00717 Header header\n\
00718 \n\
00719 # The robot link this constraint refers to\n\
00720 string link_name\n\
00721 \n\
00722 # The offset (in the link frame) for the target point on the link we are planning for\n\
00723 geometry_msgs/Point target_point_offset\n\
00724 \n\
00725 # The nominal/target position for the point we are planning for\n\
00726 geometry_msgs/Point position\n\
00727 \n\
00728 # The shape of the bounded region that constrains the position of the end-effector\n\
00729 # This region is always centered at the position defined above\n\
00730 arm_navigation_msgs/Shape constraint_region_shape\n\
00731 \n\
00732 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00733 # This allows the specification of non-axis aligned constraints\n\
00734 geometry_msgs/Quaternion constraint_region_orientation\n\
00735 \n\
00736 # Constraint weighting factor - a weight for this constraint\n\
00737 float64 weight\n\
00738 \n\
00739 ================================================================================\n\
00740 MSG: arm_navigation_msgs/Shape\n\
00741 byte SPHERE=0\n\
00742 byte BOX=1\n\
00743 byte CYLINDER=2\n\
00744 byte MESH=3\n\
00745 \n\
00746 byte type\n\
00747 \n\
00748 \n\
00749 #### define sphere, box, cylinder ####\n\
00750 # the origin of each shape is considered at the shape's center\n\
00751 \n\
00752 # for sphere\n\
00753 # radius := dimensions[0]\n\
00754 \n\
00755 # for cylinder\n\
00756 # radius := dimensions[0]\n\
00757 # length := dimensions[1]\n\
00758 # the length is along the Z axis\n\
00759 \n\
00760 # for box\n\
00761 # size_x := dimensions[0]\n\
00762 # size_y := dimensions[1]\n\
00763 # size_z := dimensions[2]\n\
00764 float64[] dimensions\n\
00765 \n\
00766 \n\
00767 #### define mesh ####\n\
00768 \n\
00769 # list of triangles; triangle k is defined by tre vertices located\n\
00770 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00771 int32[] triangles\n\
00772 geometry_msgs/Point[] vertices\n\
00773 \n\
00774 ================================================================================\n\
00775 MSG: arm_navigation_msgs/OrientationConstraint\n\
00776 # This message contains the definition of an orientation constraint.\n\
00777 Header header\n\
00778 \n\
00779 # The robot link this constraint refers to\n\
00780 string link_name\n\
00781 \n\
00782 # The type of the constraint\n\
00783 int32 type\n\
00784 int32 LINK_FRAME=0\n\
00785 int32 HEADER_FRAME=1\n\
00786 \n\
00787 # The desired orientation of the robot link specified as a quaternion\n\
00788 geometry_msgs/Quaternion orientation\n\
00789 \n\
00790 # optional RPY error tolerances specified if \n\
00791 float64 absolute_roll_tolerance\n\
00792 float64 absolute_pitch_tolerance\n\
00793 float64 absolute_yaw_tolerance\n\
00794 \n\
00795 # Constraint weighting factor - a weight for this constraint\n\
00796 float64 weight\n\
00797 \n\
00798 ================================================================================\n\
00799 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00800 # This message contains the definition of a visibility constraint.\n\
00801 Header header\n\
00802 \n\
00803 # The point stamped target that needs to be kept within view of the sensor\n\
00804 geometry_msgs/PointStamped target\n\
00805 \n\
00806 # The local pose of the frame in which visibility is to be maintained\n\
00807 # The frame id should represent the robot link to which the sensor is attached\n\
00808 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00809 geometry_msgs/PoseStamped sensor_pose\n\
00810 \n\
00811 # The deviation (in radians) that will be tolerated\n\
00812 # Constraint error will be measured as the solid angle between the \n\
00813 # X axis of the frame defined above and the vector between the origin \n\
00814 # of the frame defined above and the target location\n\
00815 float64 absolute_tolerance\n\
00816 \n\
00817 \n\
00818 ================================================================================\n\
00819 MSG: geometry_msgs/PointStamped\n\
00820 # This represents a Point with reference coordinate frame and timestamp\n\
00821 Header header\n\
00822 Point point\n\
00823 \n\
00824 ================================================================================\n\
00825 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00826 # A set of collision operations that will be performed in the order they are specified\n\
00827 CollisionOperation[] collision_operations\n\
00828 ================================================================================\n\
00829 MSG: arm_navigation_msgs/CollisionOperation\n\
00830 # A definition of a collision operation\n\
00831 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00832 # between the gripper and all objects in the collision space\n\
00833 \n\
00834 string object1\n\
00835 string object2\n\
00836 string COLLISION_SET_ALL=\"all\"\n\
00837 string COLLISION_SET_OBJECTS=\"objects\"\n\
00838 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00839 \n\
00840 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00841 float64 penetration_distance\n\
00842 \n\
00843 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00844 int32 operation\n\
00845 int32 DISABLE=0\n\
00846 int32 ENABLE=1\n\
00847 \n\
00848 ================================================================================\n\
00849 MSG: arm_navigation_msgs/LinkPadding\n\
00850 #name for the link\n\
00851 string link_name\n\
00852 \n\
00853 # padding to apply to the link\n\
00854 float64 padding\n\
00855 \n\
00856 ";
00857 }
00858
00859 static const char* value(const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> &) { return value(); }
00860 };
00861
00862 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {};
00863 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> > : public TrueType {};
00864 }
00865 }
00866
00867 namespace ros
00868 {
00869 namespace serialization
00870 {
00871
00872 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> >
00873 {
00874 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00875 {
00876 stream.next(m.header);
00877 stream.next(m.goal_id);
00878 stream.next(m.goal);
00879 }
00880
00881 ROS_DECLARE_ALLINONE_SERIALIZER;
00882 };
00883 }
00884 }
00885
00886 namespace ros
00887 {
00888 namespace message_operations
00889 {
00890
00891 template<class ContainerAllocator>
00892 struct Printer< ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> >
00893 {
00894 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PlaceActionGoal_<ContainerAllocator> & v)
00895 {
00896 s << indent << "header: ";
00897 s << std::endl;
00898 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00899 s << indent << "goal_id: ";
00900 s << std::endl;
00901 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
00902 s << indent << "goal: ";
00903 s << std::endl;
00904 Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
00905 }
00906 };
00907
00908
00909 }
00910 }
00911
00912 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEACTIONGOAL_H
00913