geo_transformations.cpp
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #include "main.h"
00026 #include <Eigen/Geometry>
00027 #include <Eigen/LU>
00028 #include <Eigen/SVD>
00029 
00030 template<typename Scalar, int Mode, int Options> void non_projective_only()
00031 {
00032     /* this test covers the following files:
00033      Cross.h Quaternion.h, Transform.cpp
00034   */
00035   typedef Matrix<Scalar,2,2> Matrix2;
00036   typedef Matrix<Scalar,3,3> Matrix3;
00037   typedef Matrix<Scalar,4,4> Matrix4;
00038   typedef Matrix<Scalar,2,1> Vector2;
00039   typedef Matrix<Scalar,3,1> Vector3;
00040   typedef Matrix<Scalar,4,1> Vector4;
00041   typedef Quaternion<Scalar> Quaternionx;
00042   typedef AngleAxis<Scalar> AngleAxisx;
00043   typedef Transform<Scalar,2,Mode,Options> Transform2;
00044   typedef Transform<Scalar,3,Mode,Options> Transform3;
00045   typedef Transform<Scalar,2,Isometry,Options> Isometry2;
00046   typedef Transform<Scalar,3,Isometry,Options> Isometry3;
00047   typedef typename Transform3::MatrixType MatrixType;
00048   typedef DiagonalMatrix<Scalar,2> AlignedScaling2;
00049   typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
00050   typedef Translation<Scalar,2> Translation2;
00051   typedef Translation<Scalar,3> Translation3;
00052 
00053   Vector3 v0 = Vector3::Random(),
00054           v1 = Vector3::Random();
00055 
00056   Transform3 t0, t1, t2;
00057 
00058   Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
00059 
00060   Quaternionx q1, q2;
00061 
00062   q1 = AngleAxisx(a, v0.normalized());
00063 
00064   t0 = Transform3::Identity();
00065   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
00066 
00067   t0.linear() = q1.toRotationMatrix();
00068 
00069   v0 << 50, 2, 1;
00070   t0.scale(v0);
00071 
00072   VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());
00073 
00074   t0.setIdentity();
00075   t1.setIdentity();
00076   v1 << 1, 2, 3;
00077   t0.linear() = q1.toRotationMatrix();
00078   t0.pretranslate(v0);
00079   t0.scale(v1);
00080   t1.linear() = q1.conjugate().toRotationMatrix();
00081   t1.prescale(v1.cwiseInverse());
00082   t1.translate(-v0);
00083 
00084   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
00085 
00086   t1.fromPositionOrientationScale(v0, q1, v1);
00087   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
00088   VERIFY_IS_APPROX(t1*v1, t0*v1);
00089 
00090   // translation * vector
00091   t0.setIdentity();
00092   t0.translate(v0);
00093   VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
00094 
00095   // AlignedScaling * vector
00096   t0.setIdentity();
00097   t0.scale(v0);
00098   VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
00099 }
00100 
00101 template<typename Scalar, int Mode, int Options> void transformations()
00102 {
00103   /* this test covers the following files:
00104      Cross.h Quaternion.h, Transform.cpp
00105   */
00106   typedef Matrix<Scalar,2,2> Matrix2;
00107   typedef Matrix<Scalar,3,3> Matrix3;
00108   typedef Matrix<Scalar,4,4> Matrix4;
00109   typedef Matrix<Scalar,2,1> Vector2;
00110   typedef Matrix<Scalar,3,1> Vector3;
00111   typedef Matrix<Scalar,4,1> Vector4;
00112   typedef Quaternion<Scalar> Quaternionx;
00113   typedef AngleAxis<Scalar> AngleAxisx;
00114   typedef Transform<Scalar,2,Mode,Options> Transform2;
00115   typedef Transform<Scalar,3,Mode,Options> Transform3;
00116   typedef Transform<Scalar,2,Isometry,Options> Isometry2;
00117   typedef Transform<Scalar,3,Isometry,Options> Isometry3;
00118   typedef typename Transform3::MatrixType MatrixType;
00119   typedef DiagonalMatrix<Scalar,2> AlignedScaling2;
00120   typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
00121   typedef Translation<Scalar,2> Translation2;
00122   typedef Translation<Scalar,3> Translation3;
00123 
00124   Vector3 v0 = Vector3::Random(),
00125     v1 = Vector3::Random(),
00126     v2 = Vector3::Random();
00127   Vector2 u0 = Vector2::Random();
00128   Matrix3 matrot1, m;
00129 
00130   Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
00131   Scalar s0 = internal::random<Scalar>();
00132 
00133   VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
00134   VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
00135   VERIFY_IS_APPROX(internal::cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
00136   m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
00137   VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
00138   VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
00139 
00140   Quaternionx q1, q2;
00141   q1 = AngleAxisx(a, v0.normalized());
00142   q2 = AngleAxisx(a, v1.normalized());
00143 
00144   // rotation matrix conversion
00145   matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
00146           * AngleAxisx(Scalar(0.2), Vector3::UnitY())
00147           * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
00148   VERIFY_IS_APPROX(matrot1 * v1,
00149        AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
00150     * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
00151     * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
00152 
00153   // angle-axis conversion
00154   AngleAxisx aa = AngleAxisx(q1);
00155   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
00156   VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
00157 
00158   aa.fromRotationMatrix(aa.toRotationMatrix());
00159   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
00160   VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
00161 
00162   // AngleAxis
00163   VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
00164     Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
00165 
00166   AngleAxisx aa1;
00167   m = q1.toRotationMatrix();
00168   aa1 = m;
00169   VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
00170     Quaternionx(m).toRotationMatrix());
00171 
00172   // Transform
00173   // TODO complete the tests !
00174   a = 0;
00175   while (internal::abs(a)<Scalar(0.1))
00176     a = internal::random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
00177   q1 = AngleAxisx(a, v0.normalized());
00178   Transform3 t0, t1, t2;
00179 
00180   // first test setIdentity() and Identity()
00181   t0.setIdentity();
00182   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
00183   t0.matrix().setZero();
00184   t0 = Transform3::Identity();
00185   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
00186 
00187   t0.setIdentity();
00188   t1.setIdentity();
00189   v1 << 1, 2, 3;
00190   t0.linear() = q1.toRotationMatrix();
00191   t0.pretranslate(v0);
00192   t0.scale(v1);
00193   t1.linear() = q1.conjugate().toRotationMatrix();
00194   t1.prescale(v1.cwiseInverse());
00195   t1.translate(-v0);
00196 
00197   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
00198 
00199   t1.fromPositionOrientationScale(v0, q1, v1);
00200   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
00201 
00202   t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
00203   t1.setIdentity(); t1.scale(v0).rotate(q1);
00204   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00205 
00206   t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
00207   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00208 
00209   VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
00210   VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
00211 
00212   // More transform constructors, operator=, operator*=
00213 
00214   Matrix3 mat3 = Matrix3::Random();
00215   Matrix4 mat4;
00216   mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
00217   Transform3 tmat3(mat3), tmat4(mat4);
00218   if(Mode!=int(AffineCompact))
00219     tmat4.matrix()(3,3) = Scalar(1);
00220   VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
00221 
00222   Scalar a3 = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
00223   Vector3 v3 = Vector3::Random().normalized();
00224   AngleAxisx aa3(a3, v3);
00225   Transform3 t3(aa3);
00226   Transform3 t4;
00227   t4 = aa3;
00228   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
00229   t4.rotate(AngleAxisx(-a3,v3));
00230   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
00231   t4 *= aa3;
00232   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
00233 
00234   v3 = Vector3::Random();
00235   Translation3 tv3(v3);
00236   Transform3 t5(tv3);
00237   t4 = tv3;
00238   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
00239   t4.translate(-v3);
00240   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
00241   t4 *= tv3;
00242   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
00243 
00244   AlignedScaling3 sv3(v3);
00245   Transform3 t6(sv3);
00246   t4 = sv3;
00247   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
00248   t4.scale(v3.cwiseInverse());
00249   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
00250   t4 *= sv3;
00251   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
00252 
00253   // matrix * transform
00254   VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix());
00255 
00256   // chained Transform product
00257   VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
00258 
00259   // check that Transform product doesn't have aliasing problems
00260   t5 = t4;
00261   t5 = t5*t5;
00262   VERIFY_IS_APPROX(t5, t4*t4);
00263 
00264   // 2D transformation
00265   Transform2 t20, t21;
00266   Vector2 v20 = Vector2::Random();
00267   Vector2 v21 = Vector2::Random();
00268   for (int k=0; k<2; ++k)
00269     if (internal::abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
00270   t21.setIdentity();
00271   t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
00272   VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
00273     t21.pretranslate(v20).scale(v21).matrix());
00274 
00275   t21.setIdentity();
00276   t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
00277   VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
00278         * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
00279 
00280   // Transform - new API
00281   // 3D
00282   t0.setIdentity();
00283   t0.rotate(q1).scale(v0).translate(v0);
00284   // mat * aligned scaling and mat * translation
00285   t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0);
00286   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00287   t1 = (Matrix3(q1) * Scaling(v0)) * Translation3(v0);
00288   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00289   t1 = (q1 * Scaling(v0)) * Translation3(v0);
00290   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00291   // mat * transformation and aligned scaling * translation
00292   t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
00293   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00294 
00295 
00296   t0.setIdentity();
00297   t0.scale(s0).translate(v0);
00298   t1 = Scaling(s0) * Translation3(v0);
00299   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00300   t0.prescale(s0);
00301   t1 = Scaling(s0) * t1;
00302   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00303   
00304   t0 = t3;
00305   t0.scale(s0);
00306   t1 = t3 * Scaling(s0,s0,s0);
00307   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00308   t0.prescale(s0);
00309   t1 = Scaling(s0,s0,s0) * t1;
00310   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00311 
00312 
00313   t0.setIdentity();
00314   t0.prerotate(q1).prescale(v0).pretranslate(v0);
00315   // translation * aligned scaling and transformation * mat
00316   t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
00317   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00318   // scaling * mat and translation * mat
00319   t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
00320   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00321 
00322   t0.setIdentity();
00323   t0.scale(v0).translate(v0).rotate(q1);
00324   // translation * mat and aligned scaling * transformation
00325   t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
00326   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00327   // transformation * aligned scaling
00328   t0.scale(v0);
00329   t1 *= AlignedScaling3(v0);
00330   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00331   // transformation * translation
00332   t0.translate(v0);
00333   t1 = t1 * Translation3(v0);
00334   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00335   // translation * transformation
00336   t0.pretranslate(v0);
00337   t1 = Translation3(v0) * t1;
00338   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00339 
00340   // transform * quaternion
00341   t0.rotate(q1);
00342   t1 = t1 * q1;
00343   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00344 
00345   // translation * quaternion
00346   t0.translate(v1).rotate(q1);
00347   t1 = t1 * (Translation3(v1) * q1);
00348   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00349 
00350   // aligned scaling * quaternion
00351   t0.scale(v1).rotate(q1);
00352   t1 = t1 * (AlignedScaling3(v1) * q1);
00353   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00354 
00355   // quaternion * transform
00356   t0.prerotate(q1);
00357   t1 = q1 * t1;
00358   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00359 
00360   // quaternion * translation
00361   t0.rotate(q1).translate(v1);
00362   t1 = t1 * (q1 * Translation3(v1));
00363   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00364 
00365   // quaternion * aligned scaling
00366   t0.rotate(q1).scale(v1);
00367   t1 = t1 * (q1 * AlignedScaling3(v1));
00368   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
00369 
00370   // test transform inversion
00371   t0.setIdentity();
00372   t0.translate(v0);
00373   t0.linear().setRandom();
00374   Matrix4 t044 = Matrix4::Zero();
00375   t044(3,3) = 1;
00376   t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
00377   VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
00378   t0.setIdentity();
00379   t0.translate(v0).rotate(q1);
00380   t044 = Matrix4::Zero();
00381   t044(3,3) = 1;
00382   t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
00383   VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
00384 
00385   Matrix3 mat_rotation, mat_scaling;
00386   t0.setIdentity();
00387   t0.translate(v0).rotate(q1).scale(v1);
00388   t0.computeRotationScaling(&mat_rotation, &mat_scaling);
00389   VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
00390   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
00391   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
00392   t0.computeScalingRotation(&mat_scaling, &mat_rotation);
00393   VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
00394   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
00395   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
00396 
00397   // test casting
00398   Transform<float,3,Mode> t1f = t1.template cast<float>();
00399   VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
00400   Transform<double,3,Mode> t1d = t1.template cast<double>();
00401   VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
00402 
00403   Translation3 tr1(v0);
00404   Translation<float,3> tr1f = tr1.template cast<float>();
00405   VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
00406   Translation<double,3> tr1d = tr1.template cast<double>();
00407   VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
00408 
00409   AngleAxis<float> aa1f = aa1.template cast<float>();
00410   VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
00411   AngleAxis<double> aa1d = aa1.template cast<double>();
00412   VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
00413 
00414   Rotation2D<Scalar> r2d1(internal::random<Scalar>());
00415   Rotation2D<float> r2d1f = r2d1.template cast<float>();
00416   VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
00417   Rotation2D<double> r2d1d = r2d1.template cast<double>();
00418   VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
00419 
00420 }
00421 
00422 template<typename Scalar> void transform_alignment()
00423 {
00424   typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a;
00425   typedef Transform<Scalar,3,Projective,DontAlign> Projective3u;
00426 
00427   EIGEN_ALIGN16 Scalar array1[16];
00428   EIGEN_ALIGN16 Scalar array2[16];
00429   EIGEN_ALIGN16 Scalar array3[16+1];
00430   Scalar* array3u = array3+1;
00431 
00432   Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a;
00433   Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u;
00434   Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u;
00435   
00436   p1->matrix().setRandom();
00437   *p2 = *p1;
00438   *p3 = *p1;
00439 
00440   VERIFY_IS_APPROX(p1->matrix(), p2->matrix());
00441   VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
00442   
00443   VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
00444   
00445   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
00446   if(internal::packet_traits<Scalar>::Vectorizable)
00447     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a));
00448   #endif
00449 }
00450 
00451 void test_geo_transformations()
00452 {
00453   for(int i = 0; i < g_repeat; i++) {
00454     CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() ));
00455     CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() ));
00456     
00457     CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() ));
00458     CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() ));
00459     CALL_SUBTEST_2(( transform_alignment<float>() ));
00460     
00461     CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() ));
00462     CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() ));
00463     CALL_SUBTEST_3(( transform_alignment<double>() ));
00464     
00465     CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() ));
00466     CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() ));
00467     
00468     CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() ));
00469     CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() ));
00470 
00471     CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() ));
00472     CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() ));
00473   }
00474 }


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:32:44