Public Types | Public Member Functions | Protected Member Functions | Protected Attributes
JacobiRotation< Scalar > Class Template Reference

Rotation given by a cosine-sine pair. More...

#include <Jacobi.h>

List of all members.

Public Types

typedef NumTraits< Scalar >::Real RealScalar

Public Member Functions

JacobiRotation adjoint () const
Scalarc ()
Scalar c () const
 JacobiRotation ()
 JacobiRotation (const Scalar &c, const Scalar &s)
void makeGivens (const Scalar &p, const Scalar &q, Scalar *z=0)
template<typename Derived >
bool makeJacobi (const MatrixBase< Derived > &, typename Derived::Index p, typename Derived::Index q)
bool makeJacobi (RealScalar x, Scalar y, RealScalar z)
JacobiRotation operator* (const JacobiRotation &other)
Scalars ()
Scalar s () const
JacobiRotation transpose () const

Protected Member Functions

void makeGivens (const Scalar &p, const Scalar &q, Scalar *z, internal::true_type)
void makeGivens (const Scalar &p, const Scalar &q, Scalar *z, internal::false_type)

Protected Attributes

Scalar m_c
Scalar m_s

Detailed Description

template<typename Scalar>
class JacobiRotation< Scalar >

Rotation given by a cosine-sine pair.

This class represents a Jacobi or Givens rotation. This is a 2D rotation in the plane J of angle $ \theta $ defined by its cosine c and sine s as follow: $ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) $

You can apply the respective counter-clockwise rotation to a column vector v by applying its adjoint on the left: $ v = J^* v $ that translates to the following Eigen code:

 v.applyOnTheLeft(J.adjoint());
See also:
MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

Definition at line 47 of file Jacobi.h.


Member Typedef Documentation

template<typename Scalar>
typedef NumTraits<Scalar>::Real JacobiRotation< Scalar >::RealScalar

Definition at line 50 of file Jacobi.h.


Constructor & Destructor Documentation

template<typename Scalar>
JacobiRotation< Scalar >::JacobiRotation ( ) [inline]

Default constructor without any initialization.

Definition at line 53 of file Jacobi.h.

template<typename Scalar>
JacobiRotation< Scalar >::JacobiRotation ( const Scalar c,
const Scalar s 
) [inline]

Construct a planar rotation from a cosine-sine pair (c, s).

Definition at line 56 of file Jacobi.h.


Member Function Documentation

template<typename Scalar>
JacobiRotation JacobiRotation< Scalar >::adjoint ( ) const [inline]

Returns the adjoint transformation

Definition at line 74 of file Jacobi.h.

template<typename Scalar>
Scalar& JacobiRotation< Scalar >::c ( ) [inline]

Definition at line 58 of file Jacobi.h.

template<typename Scalar>
Scalar JacobiRotation< Scalar >::c ( ) const [inline]

Definition at line 59 of file Jacobi.h.

template<typename Scalar >
void JacobiRotation< Scalar >::makeGivens ( const Scalar p,
const Scalar q,
Scalar z = 0 
)

Makes *this as a Givens rotation G such that applying $ G^* $ to the left of the vector $ V = \left ( \begin{array}{c} p \\ q \end{array} \right )$ yields: $ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )$.

The value of z is returned if z is not null (the default is null). Also note that G is built such that the cosine is always real.

Example:

Vector2f v = Vector2f::Random();
JacobiRotation<float> G;
G.makeGivens(v.x(), v.y());
cout << "Here is the vector v:" << endl << v << endl;
v.applyOnTheLeft(0, 1, G.adjoint());
cout << "Here is the vector J' * v:" << endl << v << endl;

Output:

This function implements the continuous Givens rotation generation algorithm found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.

See also:
MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

Definition at line 158 of file Jacobi.h.

template<typename Scalar >
void JacobiRotation< Scalar >::makeGivens ( const Scalar p,
const Scalar q,
Scalar z,
internal::true_type   
) [protected]

Definition at line 166 of file Jacobi.h.

template<typename Scalar >
void JacobiRotation< Scalar >::makeGivens ( const Scalar p,
const Scalar q,
Scalar z,
internal::false_type   
) [protected]

Definition at line 221 of file Jacobi.h.

template<typename Scalar >
template<typename Derived >
bool JacobiRotation< Scalar >::makeJacobi ( const MatrixBase< Derived > &  m,
typename Derived::Index  p,
typename Derived::Index  q 
) [inline]

Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the 2x2 selfadjoint matrix $ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )$ yields a diagonal matrix $ A = J^* B J $

Example:

Matrix2f m = Matrix2f::Random();
m = (m + m.adjoint()).eval();
JacobiRotation<float> J;
J.makeJacobi(m, 0, 1);
cout << "Here is the matrix m:" << endl << m << endl;
m.applyOnTheLeft(0, 1, J.adjoint());
m.applyOnTheRight(0, 1, J);
cout << "Here is the matrix J' * m * J:" << endl << m << endl;

Output:

See also:
JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

Definition at line 136 of file Jacobi.h.

template<typename Scalar >
bool JacobiRotation< Scalar >::makeJacobi ( RealScalar  x,
Scalar  y,
RealScalar  z 
)

Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the selfadjoint 2x2 matrix $ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )$ yields a diagonal matrix $ A = J^* B J $

See also:
MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

Definition at line 95 of file Jacobi.h.

template<typename Scalar>
JacobiRotation JacobiRotation< Scalar >::operator* ( const JacobiRotation< Scalar > &  other) [inline]

Concatenates two planar rotation

Definition at line 64 of file Jacobi.h.

template<typename Scalar>
Scalar& JacobiRotation< Scalar >::s ( ) [inline]

Definition at line 60 of file Jacobi.h.

template<typename Scalar>
Scalar JacobiRotation< Scalar >::s ( ) const [inline]

Definition at line 61 of file Jacobi.h.

template<typename Scalar>
JacobiRotation JacobiRotation< Scalar >::transpose ( ) const [inline]

Returns the transposed transformation

Definition at line 71 of file Jacobi.h.


Member Data Documentation

template<typename Scalar>
Scalar JacobiRotation< Scalar >::m_c [protected]

Definition at line 86 of file Jacobi.h.

template<typename Scalar>
Scalar JacobiRotation< Scalar >::m_s [protected]

Definition at line 86 of file Jacobi.h.


The documentation for this class was generated from the following file:


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:34:21