MatrixFunction.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
00005 //
00006 // Eigen is free software; you can redistribute it and/or
00007 // modify it under the terms of the GNU Lesser General Public
00008 // License as published by the Free Software Foundation; either
00009 // version 3 of the License, or (at your option) any later version.
00010 //
00011 // Alternatively, you can redistribute it and/or
00012 // modify it under the terms of the GNU General Public License as
00013 // published by the Free Software Foundation; either version 2 of
00014 // the License, or (at your option) any later version.
00015 //
00016 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00017 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00018 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00019 // GNU General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Lesser General Public
00022 // License and a copy of the GNU General Public License along with
00023 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00024 
00025 #ifndef EIGEN_MATRIX_FUNCTION
00026 #define EIGEN_MATRIX_FUNCTION
00027 
00028 #include "StemFunction.h"
00029 #include "MatrixFunctionAtomic.h"
00030 
00031 
00037 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
00038 class MatrixFunction
00039 {  
00040   private:
00041 
00042     typedef typename internal::traits<MatrixType>::Index Index;
00043     typedef typename internal::traits<MatrixType>::Scalar Scalar;    
00044     typedef typename internal::stem_function<Scalar>::type StemFunction;
00045 
00046   public:
00047 
00056     MatrixFunction(const MatrixType& A, StemFunction f);
00057 
00066     template <typename ResultType> 
00067     void compute(ResultType &result);    
00068 };
00069 
00070 
00074 template <typename MatrixType>
00075 class MatrixFunction<MatrixType, 0>
00076 {  
00077   private:
00078 
00079     typedef internal::traits<MatrixType> Traits;
00080     typedef typename Traits::Scalar Scalar;
00081     static const int Rows = Traits::RowsAtCompileTime;
00082     static const int Cols = Traits::ColsAtCompileTime;
00083     static const int Options = MatrixType::Options;
00084     static const int MaxRows = Traits::MaxRowsAtCompileTime;
00085     static const int MaxCols = Traits::MaxColsAtCompileTime;
00086 
00087     typedef std::complex<Scalar> ComplexScalar;
00088     typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
00089     typedef typename internal::stem_function<Scalar>::type StemFunction;
00090 
00091   public:
00092 
00098     MatrixFunction(const MatrixType& A, StemFunction f) : m_A(A), m_f(f) { }
00099 
00109     template <typename ResultType>
00110     void compute(ResultType& result) 
00111     {
00112       ComplexMatrix CA = m_A.template cast<ComplexScalar>();
00113       ComplexMatrix Cresult;
00114       MatrixFunction<ComplexMatrix> mf(CA, m_f);
00115       mf.compute(Cresult);
00116       result = Cresult.real();
00117     }
00118 
00119   private:
00120     typename internal::nested<MatrixType>::type m_A; 
00121     StemFunction *m_f; 
00123     MatrixFunction& operator=(const MatrixFunction&);
00124 };
00125 
00126       
00130 template <typename MatrixType>
00131 class MatrixFunction<MatrixType, 1>
00132 {
00133   private:
00134 
00135     typedef internal::traits<MatrixType> Traits;
00136     typedef typename MatrixType::Scalar Scalar;
00137     typedef typename MatrixType::Index Index;
00138     static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
00139     static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
00140     static const int Options = MatrixType::Options;
00141     typedef typename NumTraits<Scalar>::Real RealScalar;
00142     typedef typename internal::stem_function<Scalar>::type StemFunction;
00143     typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
00144     typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
00145     typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
00146     typedef std::list<Scalar> Cluster;
00147     typedef std::list<Cluster> ListOfClusters;
00148     typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
00149 
00150   public:
00151 
00152     MatrixFunction(const MatrixType& A, StemFunction f);
00153     template <typename ResultType> void compute(ResultType& result);
00154 
00155   private:
00156 
00157     void computeSchurDecomposition();
00158     void partitionEigenvalues();
00159     typename ListOfClusters::iterator findCluster(Scalar key);
00160     void computeClusterSize();
00161     void computeBlockStart();
00162     void constructPermutation();
00163     void permuteSchur();
00164     void swapEntriesInSchur(Index index);
00165     void computeBlockAtomic();
00166     Block<MatrixType> block(MatrixType& A, Index i, Index j);
00167     void computeOffDiagonal();
00168     DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
00169 
00170     typename internal::nested<MatrixType>::type m_A; 
00171     StemFunction *m_f; 
00172     MatrixType m_T; 
00173     MatrixType m_U; 
00174     MatrixType m_fT; 
00175     ListOfClusters m_clusters; 
00176     DynamicIntVectorType m_eivalToCluster; 
00177     DynamicIntVectorType m_clusterSize; 
00178     DynamicIntVectorType m_blockStart; 
00179     IntVectorType m_permutation; 
00187     static const RealScalar separation() { return static_cast<RealScalar>(0.1); }
00188 
00189     MatrixFunction& operator=(const MatrixFunction&);
00190 };
00191 
00197 template <typename MatrixType>
00198 MatrixFunction<MatrixType,1>::MatrixFunction(const MatrixType& A, StemFunction f) :
00199   m_A(A), m_f(f)
00200 {
00201   /* empty body */
00202 }
00203 
00209 template <typename MatrixType>
00210 template <typename ResultType>
00211 void MatrixFunction<MatrixType,1>::compute(ResultType& result) 
00212 {
00213   computeSchurDecomposition();
00214   partitionEigenvalues();
00215   computeClusterSize();
00216   computeBlockStart();
00217   constructPermutation();
00218   permuteSchur();
00219   computeBlockAtomic();
00220   computeOffDiagonal();
00221   result = m_U * m_fT * m_U.adjoint();
00222 }
00223 
00225 template <typename MatrixType>
00226 void MatrixFunction<MatrixType,1>::computeSchurDecomposition()
00227 {
00228   const ComplexSchur<MatrixType> schurOfA(m_A);  
00229   m_T = schurOfA.matrixT();
00230   m_U = schurOfA.matrixU();
00231 }
00232 
00244 template <typename MatrixType>
00245 void MatrixFunction<MatrixType,1>::partitionEigenvalues()
00246 {
00247   const Index rows = m_T.rows();
00248   VectorType diag = m_T.diagonal(); // contains eigenvalues of A
00249 
00250   for (Index i=0; i<rows; ++i) {
00251     // Find set containing diag(i), adding a new set if necessary
00252     typename ListOfClusters::iterator qi = findCluster(diag(i));
00253     if (qi == m_clusters.end()) {
00254       Cluster l;
00255       l.push_back(diag(i));
00256       m_clusters.push_back(l);
00257       qi = m_clusters.end();
00258       --qi;
00259     }
00260 
00261     // Look for other element to add to the set
00262     for (Index j=i+1; j<rows; ++j) {
00263       if (internal::abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
00264         typename ListOfClusters::iterator qj = findCluster(diag(j));
00265         if (qj == m_clusters.end()) {
00266           qi->push_back(diag(j));
00267         } else {
00268           qi->insert(qi->end(), qj->begin(), qj->end());
00269           m_clusters.erase(qj);
00270         }
00271       }
00272     }
00273   }
00274 }
00275 
00281 template <typename MatrixType>
00282 typename MatrixFunction<MatrixType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,1>::findCluster(Scalar key)
00283 {
00284   typename Cluster::iterator j;
00285   for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
00286     j = std::find(i->begin(), i->end(), key);
00287     if (j != i->end())
00288       return i;
00289   }
00290   return m_clusters.end();
00291 }
00292 
00294 template <typename MatrixType>
00295 void MatrixFunction<MatrixType,1>::computeClusterSize()
00296 {
00297   const Index rows = m_T.rows();
00298   VectorType diag = m_T.diagonal(); 
00299   const Index numClusters = static_cast<Index>(m_clusters.size());
00300 
00301   m_clusterSize.setZero(numClusters);
00302   m_eivalToCluster.resize(rows);
00303   Index clusterIndex = 0;
00304   for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
00305     for (Index i = 0; i < diag.rows(); ++i) {
00306       if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
00307         ++m_clusterSize[clusterIndex];
00308         m_eivalToCluster[i] = clusterIndex;
00309       }
00310     }
00311     ++clusterIndex;
00312   }
00313 }
00314 
00316 template <typename MatrixType>
00317 void MatrixFunction<MatrixType,1>::computeBlockStart()
00318 {
00319   m_blockStart.resize(m_clusterSize.rows());
00320   m_blockStart(0) = 0;
00321   for (Index i = 1; i < m_clusterSize.rows(); i++) {
00322     m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
00323   }
00324 }
00325 
00327 template <typename MatrixType>
00328 void MatrixFunction<MatrixType,1>::constructPermutation()
00329 {
00330   DynamicIntVectorType indexNextEntry = m_blockStart;
00331   m_permutation.resize(m_T.rows());
00332   for (Index i = 0; i < m_T.rows(); i++) {
00333     Index cluster = m_eivalToCluster[i];
00334     m_permutation[i] = indexNextEntry[cluster];
00335     ++indexNextEntry[cluster];
00336   }
00337 }  
00338 
00340 template <typename MatrixType>
00341 void MatrixFunction<MatrixType,1>::permuteSchur()
00342 {
00343   IntVectorType p = m_permutation;
00344   for (Index i = 0; i < p.rows() - 1; i++) {
00345     Index j;
00346     for (j = i; j < p.rows(); j++) {
00347       if (p(j) == i) break;
00348     }
00349     eigen_assert(p(j) == i);
00350     for (Index k = j-1; k >= i; k--) {
00351       swapEntriesInSchur(k);
00352       std::swap(p.coeffRef(k), p.coeffRef(k+1));
00353     }
00354   }
00355 }
00356 
00358 template <typename MatrixType>
00359 void MatrixFunction<MatrixType,1>::swapEntriesInSchur(Index index)
00360 {
00361   JacobiRotation<Scalar> rotation;
00362   rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
00363   m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
00364   m_T.applyOnTheRight(index, index+1, rotation);
00365   m_U.applyOnTheRight(index, index+1, rotation);
00366 }  
00367 
00375 template <typename MatrixType>
00376 void MatrixFunction<MatrixType,1>::computeBlockAtomic()
00377 { 
00378   m_fT.resize(m_T.rows(), m_T.cols());
00379   m_fT.setZero();
00380   MatrixFunctionAtomic<DynMatrixType> mfa(m_f);
00381   for (Index i = 0; i < m_clusterSize.rows(); ++i) {
00382     block(m_fT, i, i) = mfa.compute(block(m_T, i, i));
00383   }
00384 }
00385 
00387 template <typename MatrixType>
00388 Block<MatrixType> MatrixFunction<MatrixType,1>::block(MatrixType& A, Index i, Index j)
00389 {
00390   return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
00391 }
00392 
00400 template <typename MatrixType>
00401 void MatrixFunction<MatrixType,1>::computeOffDiagonal()
00402 { 
00403   for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
00404     for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
00405       // compute (blockIndex, blockIndex+diagIndex) block
00406       DynMatrixType A = block(m_T, blockIndex, blockIndex);
00407       DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
00408       DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
00409       C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
00410       for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
00411         C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
00412         C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
00413       }
00414       block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
00415     }
00416   }
00417 }
00418 
00442 template <typename MatrixType>
00443 typename MatrixFunction<MatrixType,1>::DynMatrixType MatrixFunction<MatrixType,1>::solveTriangularSylvester(
00444   const DynMatrixType& A, 
00445   const DynMatrixType& B, 
00446   const DynMatrixType& C)
00447 {
00448   eigen_assert(A.rows() == A.cols());
00449   eigen_assert(A.isUpperTriangular());
00450   eigen_assert(B.rows() == B.cols());
00451   eigen_assert(B.isUpperTriangular());
00452   eigen_assert(C.rows() == A.rows());
00453   eigen_assert(C.cols() == B.rows());
00454 
00455   Index m = A.rows();
00456   Index n = B.rows();
00457   DynMatrixType X(m, n);
00458 
00459   for (Index i = m - 1; i >= 0; --i) {
00460     for (Index j = 0; j < n; ++j) {
00461 
00462       // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
00463       Scalar AX;
00464       if (i == m - 1) {
00465         AX = 0; 
00466       } else {
00467         Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
00468         AX = AXmatrix(0,0);
00469       }
00470 
00471       // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
00472       Scalar XB;
00473       if (j == 0) {
00474         XB = 0; 
00475       } else {
00476         Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
00477         XB = XBmatrix(0,0);
00478       }
00479 
00480       X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
00481     }
00482   }
00483   return X;
00484 }
00485 
00498 template<typename Derived> class MatrixFunctionReturnValue
00499 : public ReturnByValue<MatrixFunctionReturnValue<Derived> >
00500 {
00501   public:
00502 
00503     typedef typename Derived::Scalar Scalar;
00504     typedef typename Derived::Index Index;
00505     typedef typename internal::stem_function<Scalar>::type StemFunction;
00506 
00513     MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
00514 
00520     template <typename ResultType>
00521     inline void evalTo(ResultType& result) const
00522     {
00523       const typename Derived::PlainObject Aevaluated = m_A.eval();
00524       MatrixFunction<typename Derived::PlainObject> mf(Aevaluated, m_f);
00525       mf.compute(result);
00526     }
00527 
00528     Index rows() const { return m_A.rows(); }
00529     Index cols() const { return m_A.cols(); }
00530 
00531   private:
00532     typename internal::nested<Derived>::type m_A;
00533     StemFunction *m_f;
00534 
00535     MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&);
00536 };
00537 
00538 namespace internal {
00539 template<typename Derived>
00540 struct traits<MatrixFunctionReturnValue<Derived> >
00541 {
00542   typedef typename Derived::PlainObject ReturnType;
00543 };
00544 }
00545 
00546 
00547 /********** MatrixBase methods **********/
00548 
00549 
00550 template <typename Derived>
00551 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
00552 {
00553   eigen_assert(rows() == cols());
00554   return MatrixFunctionReturnValue<Derived>(derived(), f);
00555 }
00556 
00557 template <typename Derived>
00558 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
00559 {
00560   eigen_assert(rows() == cols());
00561   typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
00562   return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
00563 }
00564 
00565 template <typename Derived>
00566 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
00567 {
00568   eigen_assert(rows() == cols());
00569   typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
00570   return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
00571 }
00572 
00573 template <typename Derived>
00574 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
00575 {
00576   eigen_assert(rows() == cols());
00577   typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
00578   return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
00579 }
00580 
00581 template <typename Derived>
00582 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
00583 {
00584   eigen_assert(rows() == cols());
00585   typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
00586   return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
00587 }
00588 
00589 #endif // EIGEN_MATRIX_FUNCTION


libicr
Author(s): Robert Krug
autogenerated on Mon Jan 6 2014 11:33:06