00001
00002 #ifndef CALIBRATION_MSGS_MESSAGE_CAMERAMEASUREMENT_H
00003 #define CALIBRATION_MSGS_MESSAGE_CAMERAMEASUREMENT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "geometry_msgs/Point.h"
00019 #include "sensor_msgs/CameraInfo.h"
00020 #include "sensor_msgs/Image.h"
00021 #include "sensor_msgs/Image.h"
00022 #include "calibration_msgs/CalibrationPattern.h"
00023
00024 namespace calibration_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct CameraMeasurement_ {
00028 typedef CameraMeasurement_<ContainerAllocator> Type;
00029
00030 CameraMeasurement_()
00031 : header()
00032 , camera_id()
00033 , image_points()
00034 , cam_info()
00035 , verbose(false)
00036 , image()
00037 , image_rect()
00038 , features()
00039 {
00040 }
00041
00042 CameraMeasurement_(const ContainerAllocator& _alloc)
00043 : header(_alloc)
00044 , camera_id(_alloc)
00045 , image_points(_alloc)
00046 , cam_info(_alloc)
00047 , verbose(false)
00048 , image(_alloc)
00049 , image_rect(_alloc)
00050 , features(_alloc)
00051 {
00052 }
00053
00054 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00055 ::std_msgs::Header_<ContainerAllocator> header;
00056
00057 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _camera_id_type;
00058 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > camera_id;
00059
00060 typedef std::vector< ::geometry_msgs::Point_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::Point_<ContainerAllocator> >::other > _image_points_type;
00061 std::vector< ::geometry_msgs::Point_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::Point_<ContainerAllocator> >::other > image_points;
00062
00063 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _cam_info_type;
00064 ::sensor_msgs::CameraInfo_<ContainerAllocator> cam_info;
00065
00066 typedef uint8_t _verbose_type;
00067 uint8_t verbose;
00068
00069 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00070 ::sensor_msgs::Image_<ContainerAllocator> image;
00071
00072 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_rect_type;
00073 ::sensor_msgs::Image_<ContainerAllocator> image_rect;
00074
00075 typedef ::calibration_msgs::CalibrationPattern_<ContainerAllocator> _features_type;
00076 ::calibration_msgs::CalibrationPattern_<ContainerAllocator> features;
00077
00078
00079 typedef boost::shared_ptr< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > Ptr;
00080 typedef boost::shared_ptr< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> const> ConstPtr;
00081 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00082 };
00083 typedef ::calibration_msgs::CameraMeasurement_<std::allocator<void> > CameraMeasurement;
00084
00085 typedef boost::shared_ptr< ::calibration_msgs::CameraMeasurement> CameraMeasurementPtr;
00086 typedef boost::shared_ptr< ::calibration_msgs::CameraMeasurement const> CameraMeasurementConstPtr;
00087
00088
00089 template<typename ContainerAllocator>
00090 std::ostream& operator<<(std::ostream& s, const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> & v)
00091 {
00092 ros::message_operations::Printer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >::stream(s, "", v);
00093 return s;}
00094
00095 }
00096
00097 namespace ros
00098 {
00099 namespace message_traits
00100 {
00101 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > : public TrueType {};
00102 template<class ContainerAllocator> struct IsMessage< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> const> : public TrueType {};
00103 template<class ContainerAllocator>
00104 struct MD5Sum< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > {
00105 static const char* value()
00106 {
00107 return "f7a0cca96cdd8e17d1424338e086252f";
00108 }
00109
00110 static const char* value(const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00111 static const uint64_t static_value1 = 0xf7a0cca96cdd8e17ULL;
00112 static const uint64_t static_value2 = 0xd1424338e086252fULL;
00113 };
00114
00115 template<class ContainerAllocator>
00116 struct DataType< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > {
00117 static const char* value()
00118 {
00119 return "calibration_msgs/CameraMeasurement";
00120 }
00121
00122 static const char* value(const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00123 };
00124
00125 template<class ContainerAllocator>
00126 struct Definition< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > {
00127 static const char* value()
00128 {
00129 return "Header header\n\
00130 string camera_id\n\
00131 geometry_msgs/Point[] image_points\n\
00132 sensor_msgs/CameraInfo cam_info\n\
00133 \n\
00134 # True -> The extra debugging fields are populated\n\
00135 bool verbose\n\
00136 \n\
00137 # Extra, partially processed data. Only needed for debugging\n\
00138 sensor_msgs/Image image\n\
00139 sensor_msgs/Image image_rect\n\
00140 calibration_msgs/CalibrationPattern features\n\
00141 \n\
00142 ================================================================================\n\
00143 MSG: std_msgs/Header\n\
00144 # Standard metadata for higher-level stamped data types.\n\
00145 # This is generally used to communicate timestamped data \n\
00146 # in a particular coordinate frame.\n\
00147 # \n\
00148 # sequence ID: consecutively increasing ID \n\
00149 uint32 seq\n\
00150 #Two-integer timestamp that is expressed as:\n\
00151 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00152 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00153 # time-handling sugar is provided by the client library\n\
00154 time stamp\n\
00155 #Frame this data is associated with\n\
00156 # 0: no frame\n\
00157 # 1: global frame\n\
00158 string frame_id\n\
00159 \n\
00160 ================================================================================\n\
00161 MSG: geometry_msgs/Point\n\
00162 # This contains the position of a point in free space\n\
00163 float64 x\n\
00164 float64 y\n\
00165 float64 z\n\
00166 \n\
00167 ================================================================================\n\
00168 MSG: sensor_msgs/CameraInfo\n\
00169 # This message defines meta information for a camera. It should be in a\n\
00170 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00171 # image topics named:\n\
00172 #\n\
00173 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00174 # image - monochrome, distorted\n\
00175 # image_color - color, distorted\n\
00176 # image_rect - monochrome, rectified\n\
00177 # image_rect_color - color, rectified\n\
00178 #\n\
00179 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00180 # for producing the four processed image topics from image_raw and\n\
00181 # camera_info. The meaning of the camera parameters are described in\n\
00182 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00183 #\n\
00184 # The image_geometry package provides a user-friendly interface to\n\
00185 # common operations using this meta information. If you want to, e.g.,\n\
00186 # project a 3d point into image coordinates, we strongly recommend\n\
00187 # using image_geometry.\n\
00188 #\n\
00189 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00190 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00191 # indicates an uncalibrated camera.\n\
00192 \n\
00193 #######################################################################\n\
00194 # Image acquisition info #\n\
00195 #######################################################################\n\
00196 \n\
00197 # Time of image acquisition, camera coordinate frame ID\n\
00198 Header header # Header timestamp should be acquisition time of image\n\
00199 # Header frame_id should be optical frame of camera\n\
00200 # origin of frame should be optical center of camera\n\
00201 # +x should point to the right in the image\n\
00202 # +y should point down in the image\n\
00203 # +z should point into the plane of the image\n\
00204 \n\
00205 \n\
00206 #######################################################################\n\
00207 # Calibration Parameters #\n\
00208 #######################################################################\n\
00209 # These are fixed during camera calibration. Their values will be the #\n\
00210 # same in all messages until the camera is recalibrated. Note that #\n\
00211 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00212 # #\n\
00213 # The internal parameters can be used to warp a raw (distorted) image #\n\
00214 # to: #\n\
00215 # 1. An undistorted image (requires D and K) #\n\
00216 # 2. A rectified image (requires D, K, R) #\n\
00217 # The projection matrix P projects 3D points into the rectified image.#\n\
00218 #######################################################################\n\
00219 \n\
00220 # The image dimensions with which the camera was calibrated. Normally\n\
00221 # this will be the full camera resolution in pixels.\n\
00222 uint32 height\n\
00223 uint32 width\n\
00224 \n\
00225 # The distortion model used. Supported models are listed in\n\
00226 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00227 # simple model of radial and tangential distortion - is sufficent.\n\
00228 string distortion_model\n\
00229 \n\
00230 # The distortion parameters, size depending on the distortion model.\n\
00231 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00232 float64[] D\n\
00233 \n\
00234 # Intrinsic camera matrix for the raw (distorted) images.\n\
00235 # [fx 0 cx]\n\
00236 # K = [ 0 fy cy]\n\
00237 # [ 0 0 1]\n\
00238 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00239 # coordinates using the focal lengths (fx, fy) and principal point\n\
00240 # (cx, cy).\n\
00241 float64[9] K # 3x3 row-major matrix\n\
00242 \n\
00243 # Rectification matrix (stereo cameras only)\n\
00244 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00245 # stereo image plane so that epipolar lines in both stereo images are\n\
00246 # parallel.\n\
00247 float64[9] R # 3x3 row-major matrix\n\
00248 \n\
00249 # Projection/camera matrix\n\
00250 # [fx' 0 cx' Tx]\n\
00251 # P = [ 0 fy' cy' Ty]\n\
00252 # [ 0 0 1 0]\n\
00253 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00254 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00255 # is the normal camera intrinsic matrix for the rectified image.\n\
00256 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00257 # coordinates using the focal lengths (fx', fy') and principal point\n\
00258 # (cx', cy') - these may differ from the values in K.\n\
00259 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00260 # also have R = the identity and P[1:3,1:3] = K.\n\
00261 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00262 # position of the optical center of the second camera in the first\n\
00263 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00264 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00265 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00266 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00267 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00268 # the rectified image is given by:\n\
00269 # [u v w]' = P * [X Y Z 1]'\n\
00270 # x = u / w\n\
00271 # y = v / w\n\
00272 # This holds for both images of a stereo pair.\n\
00273 float64[12] P # 3x4 row-major matrix\n\
00274 \n\
00275 \n\
00276 #######################################################################\n\
00277 # Operational Parameters #\n\
00278 #######################################################################\n\
00279 # These define the image region actually captured by the camera #\n\
00280 # driver. Although they affect the geometry of the output image, they #\n\
00281 # may be changed freely without recalibrating the camera. #\n\
00282 #######################################################################\n\
00283 \n\
00284 # Binning refers here to any camera setting which combines rectangular\n\
00285 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00286 # resolution of the output image to\n\
00287 # (width / binning_x) x (height / binning_y).\n\
00288 # The default values binning_x = binning_y = 0 is considered the same\n\
00289 # as binning_x = binning_y = 1 (no subsampling).\n\
00290 uint32 binning_x\n\
00291 uint32 binning_y\n\
00292 \n\
00293 # Region of interest (subwindow of full camera resolution), given in\n\
00294 # full resolution (unbinned) image coordinates. A particular ROI\n\
00295 # always denotes the same window of pixels on the camera sensor,\n\
00296 # regardless of binning settings.\n\
00297 # The default setting of roi (all values 0) is considered the same as\n\
00298 # full resolution (roi.width = width, roi.height = height).\n\
00299 RegionOfInterest roi\n\
00300 \n\
00301 ================================================================================\n\
00302 MSG: sensor_msgs/RegionOfInterest\n\
00303 # This message is used to specify a region of interest within an image.\n\
00304 #\n\
00305 # When used to specify the ROI setting of the camera when the image was\n\
00306 # taken, the height and width fields should either match the height and\n\
00307 # width fields for the associated image; or height = width = 0\n\
00308 # indicates that the full resolution image was captured.\n\
00309 \n\
00310 uint32 x_offset # Leftmost pixel of the ROI\n\
00311 # (0 if the ROI includes the left edge of the image)\n\
00312 uint32 y_offset # Topmost pixel of the ROI\n\
00313 # (0 if the ROI includes the top edge of the image)\n\
00314 uint32 height # Height of ROI\n\
00315 uint32 width # Width of ROI\n\
00316 \n\
00317 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00318 # ROI in this message. Typically this should be False if the full image\n\
00319 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00320 # used).\n\
00321 bool do_rectify\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: sensor_msgs/Image\n\
00325 # This message contains an uncompressed image\n\
00326 # (0, 0) is at top-left corner of image\n\
00327 #\n\
00328 \n\
00329 Header header # Header timestamp should be acquisition time of image\n\
00330 # Header frame_id should be optical frame of camera\n\
00331 # origin of frame should be optical center of cameara\n\
00332 # +x should point to the right in the image\n\
00333 # +y should point down in the image\n\
00334 # +z should point into to plane of the image\n\
00335 # If the frame_id here and the frame_id of the CameraInfo\n\
00336 # message associated with the image conflict\n\
00337 # the behavior is undefined\n\
00338 \n\
00339 uint32 height # image height, that is, number of rows\n\
00340 uint32 width # image width, that is, number of columns\n\
00341 \n\
00342 # The legal values for encoding are in file src/image_encodings.cpp\n\
00343 # If you want to standardize a new string format, join\n\
00344 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00345 \n\
00346 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00347 # taken from the list of strings in src/image_encodings.cpp\n\
00348 \n\
00349 uint8 is_bigendian # is this data bigendian?\n\
00350 uint32 step # Full row length in bytes\n\
00351 uint8[] data # actual matrix data, size is (step * rows)\n\
00352 \n\
00353 ================================================================================\n\
00354 MSG: calibration_msgs/CalibrationPattern\n\
00355 Header header\n\
00356 geometry_msgs/Point[] object_points\n\
00357 geometry_msgs/Point[] image_points\n\
00358 uint8 success\n\
00359 \n\
00360 ";
00361 }
00362
00363 static const char* value(const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> &) { return value(); }
00364 };
00365
00366 template<class ContainerAllocator> struct HasHeader< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > : public TrueType {};
00367 template<class ContainerAllocator> struct HasHeader< const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> > : public TrueType {};
00368 }
00369 }
00370
00371 namespace ros
00372 {
00373 namespace serialization
00374 {
00375
00376 template<class ContainerAllocator> struct Serializer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >
00377 {
00378 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00379 {
00380 stream.next(m.header);
00381 stream.next(m.camera_id);
00382 stream.next(m.image_points);
00383 stream.next(m.cam_info);
00384 stream.next(m.verbose);
00385 stream.next(m.image);
00386 stream.next(m.image_rect);
00387 stream.next(m.features);
00388 }
00389
00390 ROS_DECLARE_ALLINONE_SERIALIZER;
00391 };
00392 }
00393 }
00394
00395 namespace ros
00396 {
00397 namespace message_operations
00398 {
00399
00400 template<class ContainerAllocator>
00401 struct Printer< ::calibration_msgs::CameraMeasurement_<ContainerAllocator> >
00402 {
00403 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::calibration_msgs::CameraMeasurement_<ContainerAllocator> & v)
00404 {
00405 s << indent << "header: ";
00406 s << std::endl;
00407 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00408 s << indent << "camera_id: ";
00409 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.camera_id);
00410 s << indent << "image_points[]" << std::endl;
00411 for (size_t i = 0; i < v.image_points.size(); ++i)
00412 {
00413 s << indent << " image_points[" << i << "]: ";
00414 s << std::endl;
00415 s << indent;
00416 Printer< ::geometry_msgs::Point_<ContainerAllocator> >::stream(s, indent + " ", v.image_points[i]);
00417 }
00418 s << indent << "cam_info: ";
00419 s << std::endl;
00420 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.cam_info);
00421 s << indent << "verbose: ";
00422 Printer<uint8_t>::stream(s, indent + " ", v.verbose);
00423 s << indent << "image: ";
00424 s << std::endl;
00425 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image);
00426 s << indent << "image_rect: ";
00427 s << std::endl;
00428 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image_rect);
00429 s << indent << "features: ";
00430 s << std::endl;
00431 Printer< ::calibration_msgs::CalibrationPattern_<ContainerAllocator> >::stream(s, indent + " ", v.features);
00432 }
00433 };
00434
00435
00436 }
00437 }
00438
00439 #endif // CALIBRATION_MSGS_MESSAGE_CAMERAMEASUREMENT_H
00440