$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-flirtlib_features/doc_stacks/2013-03-01_15-30-29.334793/flirtlib_features/flirtlib_ros/msg/RefScanRos.msg */ 00002 #ifndef FLIRTLIB_ROS_MESSAGE_REFSCANROS_H 00003 #define FLIRTLIB_ROS_MESSAGE_REFSCANROS_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "sensor_msgs/LaserScan.h" 00018 #include "geometry_msgs/Pose.h" 00019 #include "flirtlib_ros/InterestPointRos.h" 00020 00021 namespace flirtlib_ros 00022 { 00023 template <class ContainerAllocator> 00024 struct RefScanRos_ { 00025 typedef RefScanRos_<ContainerAllocator> Type; 00026 00027 RefScanRos_() 00028 : scan() 00029 , pose() 00030 , pts() 00031 { 00032 } 00033 00034 RefScanRos_(const ContainerAllocator& _alloc) 00035 : scan(_alloc) 00036 , pose(_alloc) 00037 , pts(_alloc) 00038 { 00039 } 00040 00041 typedef ::sensor_msgs::LaserScan_<ContainerAllocator> _scan_type; 00042 ::sensor_msgs::LaserScan_<ContainerAllocator> scan; 00043 00044 typedef ::geometry_msgs::Pose_<ContainerAllocator> _pose_type; 00045 ::geometry_msgs::Pose_<ContainerAllocator> pose; 00046 00047 typedef std::vector< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> >::other > _pts_type; 00048 std::vector< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> >::other > pts; 00049 00050 00051 ROS_DEPRECATED uint32_t get_pts_size() const { return (uint32_t)pts.size(); } 00052 ROS_DEPRECATED void set_pts_size(uint32_t size) { pts.resize((size_t)size); } 00053 ROS_DEPRECATED void get_pts_vec(std::vector< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> >::other > & vec) const { vec = this->pts; } 00054 ROS_DEPRECATED void set_pts_vec(const std::vector< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> >::other > & vec) { this->pts = vec; } 00055 private: 00056 static const char* __s_getDataType_() { return "flirtlib_ros/RefScanRos"; } 00057 public: 00058 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00059 00060 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00061 00062 private: 00063 static const char* __s_getMD5Sum_() { return "11956f8796f4796e1612ff817c3f3dca"; } 00064 public: 00065 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00066 00067 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00068 00069 private: 00070 static const char* __s_getMessageDefinition_() { return "sensor_msgs/LaserScan scan\n\ 00071 geometry_msgs/Pose pose\n\ 00072 InterestPointRos[] pts\n\ 00073 ================================================================================\n\ 00074 MSG: sensor_msgs/LaserScan\n\ 00075 # Single scan from a planar laser range-finder\n\ 00076 #\n\ 00077 # If you have another ranging device with different behavior (e.g. a sonar\n\ 00078 # array), please find or create a different message, since applications\n\ 00079 # will make fairly laser-specific assumptions about this data\n\ 00080 \n\ 00081 Header header # timestamp in the header is the acquisition time of \n\ 00082 # the first ray in the scan.\n\ 00083 #\n\ 00084 # in frame frame_id, angles are measured around \n\ 00085 # the positive Z axis (counterclockwise, if Z is up)\n\ 00086 # with zero angle being forward along the x axis\n\ 00087 \n\ 00088 float32 angle_min # start angle of the scan [rad]\n\ 00089 float32 angle_max # end angle of the scan [rad]\n\ 00090 float32 angle_increment # angular distance between measurements [rad]\n\ 00091 \n\ 00092 float32 time_increment # time between measurements [seconds] - if your scanner\n\ 00093 # is moving, this will be used in interpolating position\n\ 00094 # of 3d points\n\ 00095 float32 scan_time # time between scans [seconds]\n\ 00096 \n\ 00097 float32 range_min # minimum range value [m]\n\ 00098 float32 range_max # maximum range value [m]\n\ 00099 \n\ 00100 float32[] ranges # range data [m] (Note: values < range_min or > range_max should be discarded)\n\ 00101 float32[] intensities # intensity data [device-specific units]. If your\n\ 00102 # device does not provide intensities, please leave\n\ 00103 # the array empty.\n\ 00104 \n\ 00105 ================================================================================\n\ 00106 MSG: std_msgs/Header\n\ 00107 # Standard metadata for higher-level stamped data types.\n\ 00108 # This is generally used to communicate timestamped data \n\ 00109 # in a particular coordinate frame.\n\ 00110 # \n\ 00111 # sequence ID: consecutively increasing ID \n\ 00112 uint32 seq\n\ 00113 #Two-integer timestamp that is expressed as:\n\ 00114 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00115 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00116 # time-handling sugar is provided by the client library\n\ 00117 time stamp\n\ 00118 #Frame this data is associated with\n\ 00119 # 0: no frame\n\ 00120 # 1: global frame\n\ 00121 string frame_id\n\ 00122 \n\ 00123 ================================================================================\n\ 00124 MSG: geometry_msgs/Pose\n\ 00125 # A representation of pose in free space, composed of postion and orientation. \n\ 00126 Point position\n\ 00127 Quaternion orientation\n\ 00128 \n\ 00129 ================================================================================\n\ 00130 MSG: geometry_msgs/Point\n\ 00131 # This contains the position of a point in free space\n\ 00132 float64 x\n\ 00133 float64 y\n\ 00134 float64 z\n\ 00135 \n\ 00136 ================================================================================\n\ 00137 MSG: geometry_msgs/Quaternion\n\ 00138 # This represents an orientation in free space in quaternion form.\n\ 00139 \n\ 00140 float64 x\n\ 00141 float64 y\n\ 00142 float64 z\n\ 00143 float64 w\n\ 00144 \n\ 00145 ================================================================================\n\ 00146 MSG: flirtlib_ros/InterestPointRos\n\ 00147 # Corresponds to the InterestPoint type in flirtlib\n\ 00148 # Includes both the point location and optionally a descriptor\n\ 00149 \n\ 00150 geometry_msgs/Pose2D pose\n\ 00151 \n\ 00152 geometry_msgs/Point[] support_points\n\ 00153 \n\ 00154 float32 scale\n\ 00155 \n\ 00156 uint32 scale_level\n\ 00157 \n\ 00158 DescriptorRos descriptor\n\ 00159 \n\ 00160 \n\ 00161 ================================================================================\n\ 00162 MSG: geometry_msgs/Pose2D\n\ 00163 # This expresses a position and orientation on a 2D manifold.\n\ 00164 \n\ 00165 float64 x\n\ 00166 float64 y\n\ 00167 float64 theta\n\ 00168 ================================================================================\n\ 00169 MSG: flirtlib_ros/DescriptorRos\n\ 00170 # Confirms to the Descriptor type in flirtlib\n\ 00171 # For now, we only allow the beta grid descriptor\n\ 00172 \n\ 00173 Vector[] hist\n\ 00174 Vector[] variance\n\ 00175 Vector[] hit\n\ 00176 Vector[] miss\n\ 00177 \n\ 00178 ================================================================================\n\ 00179 MSG: flirtlib_ros/Vector\n\ 00180 # Vector message type used by a bunch of the flirtlib messages\n\ 00181 \n\ 00182 float64[] vec\n\ 00183 "; } 00184 public: 00185 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00186 00187 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00188 00189 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00190 { 00191 ros::serialization::OStream stream(write_ptr, 1000000000); 00192 ros::serialization::serialize(stream, scan); 00193 ros::serialization::serialize(stream, pose); 00194 ros::serialization::serialize(stream, pts); 00195 return stream.getData(); 00196 } 00197 00198 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00199 { 00200 ros::serialization::IStream stream(read_ptr, 1000000000); 00201 ros::serialization::deserialize(stream, scan); 00202 ros::serialization::deserialize(stream, pose); 00203 ros::serialization::deserialize(stream, pts); 00204 return stream.getData(); 00205 } 00206 00207 ROS_DEPRECATED virtual uint32_t serializationLength() const 00208 { 00209 uint32_t size = 0; 00210 size += ros::serialization::serializationLength(scan); 00211 size += ros::serialization::serializationLength(pose); 00212 size += ros::serialization::serializationLength(pts); 00213 return size; 00214 } 00215 00216 typedef boost::shared_ptr< ::flirtlib_ros::RefScanRos_<ContainerAllocator> > Ptr; 00217 typedef boost::shared_ptr< ::flirtlib_ros::RefScanRos_<ContainerAllocator> const> ConstPtr; 00218 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00219 }; // struct RefScanRos 00220 typedef ::flirtlib_ros::RefScanRos_<std::allocator<void> > RefScanRos; 00221 00222 typedef boost::shared_ptr< ::flirtlib_ros::RefScanRos> RefScanRosPtr; 00223 typedef boost::shared_ptr< ::flirtlib_ros::RefScanRos const> RefScanRosConstPtr; 00224 00225 00226 template<typename ContainerAllocator> 00227 std::ostream& operator<<(std::ostream& s, const ::flirtlib_ros::RefScanRos_<ContainerAllocator> & v) 00228 { 00229 ros::message_operations::Printer< ::flirtlib_ros::RefScanRos_<ContainerAllocator> >::stream(s, "", v); 00230 return s;} 00231 00232 } // namespace flirtlib_ros 00233 00234 namespace ros 00235 { 00236 namespace message_traits 00237 { 00238 template<class ContainerAllocator> struct IsMessage< ::flirtlib_ros::RefScanRos_<ContainerAllocator> > : public TrueType {}; 00239 template<class ContainerAllocator> struct IsMessage< ::flirtlib_ros::RefScanRos_<ContainerAllocator> const> : public TrueType {}; 00240 template<class ContainerAllocator> 00241 struct MD5Sum< ::flirtlib_ros::RefScanRos_<ContainerAllocator> > { 00242 static const char* value() 00243 { 00244 return "11956f8796f4796e1612ff817c3f3dca"; 00245 } 00246 00247 static const char* value(const ::flirtlib_ros::RefScanRos_<ContainerAllocator> &) { return value(); } 00248 static const uint64_t static_value1 = 0x11956f8796f4796eULL; 00249 static const uint64_t static_value2 = 0x1612ff817c3f3dcaULL; 00250 }; 00251 00252 template<class ContainerAllocator> 00253 struct DataType< ::flirtlib_ros::RefScanRos_<ContainerAllocator> > { 00254 static const char* value() 00255 { 00256 return "flirtlib_ros/RefScanRos"; 00257 } 00258 00259 static const char* value(const ::flirtlib_ros::RefScanRos_<ContainerAllocator> &) { return value(); } 00260 }; 00261 00262 template<class ContainerAllocator> 00263 struct Definition< ::flirtlib_ros::RefScanRos_<ContainerAllocator> > { 00264 static const char* value() 00265 { 00266 return "sensor_msgs/LaserScan scan\n\ 00267 geometry_msgs/Pose pose\n\ 00268 InterestPointRos[] pts\n\ 00269 ================================================================================\n\ 00270 MSG: sensor_msgs/LaserScan\n\ 00271 # Single scan from a planar laser range-finder\n\ 00272 #\n\ 00273 # If you have another ranging device with different behavior (e.g. a sonar\n\ 00274 # array), please find or create a different message, since applications\n\ 00275 # will make fairly laser-specific assumptions about this data\n\ 00276 \n\ 00277 Header header # timestamp in the header is the acquisition time of \n\ 00278 # the first ray in the scan.\n\ 00279 #\n\ 00280 # in frame frame_id, angles are measured around \n\ 00281 # the positive Z axis (counterclockwise, if Z is up)\n\ 00282 # with zero angle being forward along the x axis\n\ 00283 \n\ 00284 float32 angle_min # start angle of the scan [rad]\n\ 00285 float32 angle_max # end angle of the scan [rad]\n\ 00286 float32 angle_increment # angular distance between measurements [rad]\n\ 00287 \n\ 00288 float32 time_increment # time between measurements [seconds] - if your scanner\n\ 00289 # is moving, this will be used in interpolating position\n\ 00290 # of 3d points\n\ 00291 float32 scan_time # time between scans [seconds]\n\ 00292 \n\ 00293 float32 range_min # minimum range value [m]\n\ 00294 float32 range_max # maximum range value [m]\n\ 00295 \n\ 00296 float32[] ranges # range data [m] (Note: values < range_min or > range_max should be discarded)\n\ 00297 float32[] intensities # intensity data [device-specific units]. If your\n\ 00298 # device does not provide intensities, please leave\n\ 00299 # the array empty.\n\ 00300 \n\ 00301 ================================================================================\n\ 00302 MSG: std_msgs/Header\n\ 00303 # Standard metadata for higher-level stamped data types.\n\ 00304 # This is generally used to communicate timestamped data \n\ 00305 # in a particular coordinate frame.\n\ 00306 # \n\ 00307 # sequence ID: consecutively increasing ID \n\ 00308 uint32 seq\n\ 00309 #Two-integer timestamp that is expressed as:\n\ 00310 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00311 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00312 # time-handling sugar is provided by the client library\n\ 00313 time stamp\n\ 00314 #Frame this data is associated with\n\ 00315 # 0: no frame\n\ 00316 # 1: global frame\n\ 00317 string frame_id\n\ 00318 \n\ 00319 ================================================================================\n\ 00320 MSG: geometry_msgs/Pose\n\ 00321 # A representation of pose in free space, composed of postion and orientation. \n\ 00322 Point position\n\ 00323 Quaternion orientation\n\ 00324 \n\ 00325 ================================================================================\n\ 00326 MSG: geometry_msgs/Point\n\ 00327 # This contains the position of a point in free space\n\ 00328 float64 x\n\ 00329 float64 y\n\ 00330 float64 z\n\ 00331 \n\ 00332 ================================================================================\n\ 00333 MSG: geometry_msgs/Quaternion\n\ 00334 # This represents an orientation in free space in quaternion form.\n\ 00335 \n\ 00336 float64 x\n\ 00337 float64 y\n\ 00338 float64 z\n\ 00339 float64 w\n\ 00340 \n\ 00341 ================================================================================\n\ 00342 MSG: flirtlib_ros/InterestPointRos\n\ 00343 # Corresponds to the InterestPoint type in flirtlib\n\ 00344 # Includes both the point location and optionally a descriptor\n\ 00345 \n\ 00346 geometry_msgs/Pose2D pose\n\ 00347 \n\ 00348 geometry_msgs/Point[] support_points\n\ 00349 \n\ 00350 float32 scale\n\ 00351 \n\ 00352 uint32 scale_level\n\ 00353 \n\ 00354 DescriptorRos descriptor\n\ 00355 \n\ 00356 \n\ 00357 ================================================================================\n\ 00358 MSG: geometry_msgs/Pose2D\n\ 00359 # This expresses a position and orientation on a 2D manifold.\n\ 00360 \n\ 00361 float64 x\n\ 00362 float64 y\n\ 00363 float64 theta\n\ 00364 ================================================================================\n\ 00365 MSG: flirtlib_ros/DescriptorRos\n\ 00366 # Confirms to the Descriptor type in flirtlib\n\ 00367 # For now, we only allow the beta grid descriptor\n\ 00368 \n\ 00369 Vector[] hist\n\ 00370 Vector[] variance\n\ 00371 Vector[] hit\n\ 00372 Vector[] miss\n\ 00373 \n\ 00374 ================================================================================\n\ 00375 MSG: flirtlib_ros/Vector\n\ 00376 # Vector message type used by a bunch of the flirtlib messages\n\ 00377 \n\ 00378 float64[] vec\n\ 00379 "; 00380 } 00381 00382 static const char* value(const ::flirtlib_ros::RefScanRos_<ContainerAllocator> &) { return value(); } 00383 }; 00384 00385 } // namespace message_traits 00386 } // namespace ros 00387 00388 namespace ros 00389 { 00390 namespace serialization 00391 { 00392 00393 template<class ContainerAllocator> struct Serializer< ::flirtlib_ros::RefScanRos_<ContainerAllocator> > 00394 { 00395 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00396 { 00397 stream.next(m.scan); 00398 stream.next(m.pose); 00399 stream.next(m.pts); 00400 } 00401 00402 ROS_DECLARE_ALLINONE_SERIALIZER; 00403 }; // struct RefScanRos_ 00404 } // namespace serialization 00405 } // namespace ros 00406 00407 namespace ros 00408 { 00409 namespace message_operations 00410 { 00411 00412 template<class ContainerAllocator> 00413 struct Printer< ::flirtlib_ros::RefScanRos_<ContainerAllocator> > 00414 { 00415 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::flirtlib_ros::RefScanRos_<ContainerAllocator> & v) 00416 { 00417 s << indent << "scan: "; 00418 s << std::endl; 00419 Printer< ::sensor_msgs::LaserScan_<ContainerAllocator> >::stream(s, indent + " ", v.scan); 00420 s << indent << "pose: "; 00421 s << std::endl; 00422 Printer< ::geometry_msgs::Pose_<ContainerAllocator> >::stream(s, indent + " ", v.pose); 00423 s << indent << "pts[]" << std::endl; 00424 for (size_t i = 0; i < v.pts.size(); ++i) 00425 { 00426 s << indent << " pts[" << i << "]: "; 00427 s << std::endl; 00428 s << indent; 00429 Printer< ::flirtlib_ros::InterestPointRos_<ContainerAllocator> >::stream(s, indent + " ", v.pts[i]); 00430 } 00431 } 00432 }; 00433 00434 00435 } // namespace message_operations 00436 } // namespace ros 00437 00438 #endif // FLIRTLIB_ROS_MESSAGE_REFSCANROS_H 00439