00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "household_objects_database_msgs/DatabaseModelPose.h"
00014 #include "sensor_msgs/PointCloud.h"
00015 #include "object_manipulation_msgs/SceneRegion.h"
00016
00017 namespace object_manipulation_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct GraspableObject_ : public ros::Message
00021 {
00022 typedef GraspableObject_<ContainerAllocator> Type;
00023
00024 GraspableObject_()
00025 : reference_frame_id()
00026 , potential_models()
00027 , cluster()
00028 , region()
00029 {
00030 }
00031
00032 GraspableObject_(const ContainerAllocator& _alloc)
00033 : reference_frame_id(_alloc)
00034 , potential_models(_alloc)
00035 , cluster(_alloc)
00036 , region(_alloc)
00037 {
00038 }
00039
00040 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _reference_frame_id_type;
00041 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > reference_frame_id;
00042
00043 typedef std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > _potential_models_type;
00044 std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > potential_models;
00045
00046 typedef ::sensor_msgs::PointCloud_<ContainerAllocator> _cluster_type;
00047 ::sensor_msgs::PointCloud_<ContainerAllocator> cluster;
00048
00049 typedef ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> _region_type;
00050 ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> region;
00051
00052
00053 ROS_DEPRECATED uint32_t get_potential_models_size() const { return (uint32_t)potential_models.size(); }
00054 ROS_DEPRECATED void set_potential_models_size(uint32_t size) { potential_models.resize((size_t)size); }
00055 ROS_DEPRECATED void get_potential_models_vec(std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > & vec) const { vec = this->potential_models; }
00056 ROS_DEPRECATED void set_potential_models_vec(const std::vector< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::other > & vec) { this->potential_models = vec; }
00057 private:
00058 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspableObject"; }
00059 public:
00060 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00061
00062 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00063
00064 private:
00065 static const char* __s_getMD5Sum_() { return "9df73c592d4de91f750a00a6702caa0d"; }
00066 public:
00067 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00068
00069 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00070
00071 private:
00072 static const char* __s_getMessageDefinition_() { return "# an object that the object_manipulator can work on\n\
00073 \n\
00074 # a graspable object can be represented in multiple ways. This message\n\
00075 # can contain all of them. Which one is actually used is up to the receiver\n\
00076 # of this message. When adding new representations, one must be careful that\n\
00077 # they have reasonable lightweight defaults indicating that that particular\n\
00078 # representation is not available.\n\
00079 \n\
00080 # the tf frame to be used as a reference frame when combining information from\n\
00081 # the different representations below\n\
00082 string reference_frame_id\n\
00083 \n\
00084 # potential recognition results from a database of models\n\
00085 # all poses are relative to the object reference pose\n\
00086 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00087 \n\
00088 # the point cloud itself\n\
00089 sensor_msgs/PointCloud cluster\n\
00090 \n\
00091 # a region of a PointCloud2 of interest\n\
00092 object_manipulation_msgs/SceneRegion region\n\
00093 \n\
00094 \n\
00095 ================================================================================\n\
00096 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00097 # Informs that a specific model from the Model Database has been \n\
00098 # identified at a certain location\n\
00099 \n\
00100 # the database id of the model\n\
00101 int32 model_id\n\
00102 \n\
00103 # the pose that it can be found in\n\
00104 geometry_msgs/PoseStamped pose\n\
00105 \n\
00106 # a measure of the confidence level in this detection result\n\
00107 float32 confidence\n\
00108 ================================================================================\n\
00109 MSG: geometry_msgs/PoseStamped\n\
00110 # A Pose with reference coordinate frame and timestamp\n\
00111 Header header\n\
00112 Pose pose\n\
00113 \n\
00114 ================================================================================\n\
00115 MSG: std_msgs/Header\n\
00116 # Standard metadata for higher-level stamped data types.\n\
00117 # This is generally used to communicate timestamped data \n\
00118 # in a particular coordinate frame.\n\
00119 # \n\
00120 # sequence ID: consecutively increasing ID \n\
00121 uint32 seq\n\
00122 #Two-integer timestamp that is expressed as:\n\
00123 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00124 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00125 # time-handling sugar is provided by the client library\n\
00126 time stamp\n\
00127 #Frame this data is associated with\n\
00128 # 0: no frame\n\
00129 # 1: global frame\n\
00130 string frame_id\n\
00131 \n\
00132 ================================================================================\n\
00133 MSG: geometry_msgs/Pose\n\
00134 # A representation of pose in free space, composed of postion and orientation. \n\
00135 Point position\n\
00136 Quaternion orientation\n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: geometry_msgs/Point\n\
00140 # This contains the position of a point in free space\n\
00141 float64 x\n\
00142 float64 y\n\
00143 float64 z\n\
00144 \n\
00145 ================================================================================\n\
00146 MSG: geometry_msgs/Quaternion\n\
00147 # This represents an orientation in free space in quaternion form.\n\
00148 \n\
00149 float64 x\n\
00150 float64 y\n\
00151 float64 z\n\
00152 float64 w\n\
00153 \n\
00154 ================================================================================\n\
00155 MSG: sensor_msgs/PointCloud\n\
00156 # This message holds a collection of 3d points, plus optional additional\n\
00157 # information about each point.\n\
00158 \n\
00159 # Time of sensor data acquisition, coordinate frame ID.\n\
00160 Header header\n\
00161 \n\
00162 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00163 # in the frame given in the header.\n\
00164 geometry_msgs/Point32[] points\n\
00165 \n\
00166 # Each channel should have the same number of elements as points array,\n\
00167 # and the data in each channel should correspond 1:1 with each point.\n\
00168 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00169 ChannelFloat32[] channels\n\
00170 \n\
00171 ================================================================================\n\
00172 MSG: geometry_msgs/Point32\n\
00173 # This contains the position of a point in free space(with 32 bits of precision).\n\
00174 # It is recommeded to use Point wherever possible instead of Point32. \n\
00175 # \n\
00176 # This recommendation is to promote interoperability. \n\
00177 #\n\
00178 # This message is designed to take up less space when sending\n\
00179 # lots of points at once, as in the case of a PointCloud. \n\
00180 \n\
00181 float32 x\n\
00182 float32 y\n\
00183 float32 z\n\
00184 ================================================================================\n\
00185 MSG: sensor_msgs/ChannelFloat32\n\
00186 # This message is used by the PointCloud message to hold optional data\n\
00187 # associated with each point in the cloud. The length of the values\n\
00188 # array should be the same as the length of the points array in the\n\
00189 # PointCloud, and each value should be associated with the corresponding\n\
00190 # point.\n\
00191 \n\
00192 # Channel names in existing practice include:\n\
00193 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00194 # This is opposite to usual conventions but remains for\n\
00195 # historical reasons. The newer PointCloud2 message has no\n\
00196 # such problem.\n\
00197 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00198 # (R,G,B) values packed into the least significant 24 bits,\n\
00199 # in order.\n\
00200 # \"intensity\" - laser or pixel intensity.\n\
00201 # \"distance\"\n\
00202 \n\
00203 # The channel name should give semantics of the channel (e.g.\n\
00204 # \"intensity\" instead of \"value\").\n\
00205 string name\n\
00206 \n\
00207 # The values array should be 1-1 with the elements of the associated\n\
00208 # PointCloud.\n\
00209 float32[] values\n\
00210 \n\
00211 ================================================================================\n\
00212 MSG: object_manipulation_msgs/SceneRegion\n\
00213 # Point cloud\n\
00214 sensor_msgs/PointCloud2 cloud\n\
00215 \n\
00216 # Indices for the region of interest\n\
00217 int32[] mask\n\
00218 \n\
00219 # One of the corresponding 2D images, if applicable\n\
00220 sensor_msgs/Image image\n\
00221 \n\
00222 # The disparity image, if applicable\n\
00223 sensor_msgs/Image disparity_image\n\
00224 \n\
00225 # Camera info for the camera that took the image\n\
00226 sensor_msgs/CameraInfo cam_info\n\
00227 \n\
00228 ================================================================================\n\
00229 MSG: sensor_msgs/PointCloud2\n\
00230 # This message holds a collection of N-dimensional points, which may\n\
00231 # contain additional information such as normals, intensity, etc. The\n\
00232 # point data is stored as a binary blob, its layout described by the\n\
00233 # contents of the \"fields\" array.\n\
00234 \n\
00235 # The point cloud data may be organized 2d (image-like) or 1d\n\
00236 # (unordered). Point clouds organized as 2d images may be produced by\n\
00237 # camera depth sensors such as stereo or time-of-flight.\n\
00238 \n\
00239 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00240 # points).\n\
00241 Header header\n\
00242 \n\
00243 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00244 # 1 and width is the length of the point cloud.\n\
00245 uint32 height\n\
00246 uint32 width\n\
00247 \n\
00248 # Describes the channels and their layout in the binary data blob.\n\
00249 PointField[] fields\n\
00250 \n\
00251 bool is_bigendian # Is this data bigendian?\n\
00252 uint32 point_step # Length of a point in bytes\n\
00253 uint32 row_step # Length of a row in bytes\n\
00254 uint8[] data # Actual point data, size is (row_step*height)\n\
00255 \n\
00256 bool is_dense # True if there are no invalid points\n\
00257 \n\
00258 ================================================================================\n\
00259 MSG: sensor_msgs/PointField\n\
00260 # This message holds the description of one point entry in the\n\
00261 # PointCloud2 message format.\n\
00262 uint8 INT8 = 1\n\
00263 uint8 UINT8 = 2\n\
00264 uint8 INT16 = 3\n\
00265 uint8 UINT16 = 4\n\
00266 uint8 INT32 = 5\n\
00267 uint8 UINT32 = 6\n\
00268 uint8 FLOAT32 = 7\n\
00269 uint8 FLOAT64 = 8\n\
00270 \n\
00271 string name # Name of field\n\
00272 uint32 offset # Offset from start of point struct\n\
00273 uint8 datatype # Datatype enumeration, see above\n\
00274 uint32 count # How many elements in the field\n\
00275 \n\
00276 ================================================================================\n\
00277 MSG: sensor_msgs/Image\n\
00278 # This message contains an uncompressed image\n\
00279 # (0, 0) is at top-left corner of image\n\
00280 #\n\
00281 \n\
00282 Header header # Header timestamp should be acquisition time of image\n\
00283 # Header frame_id should be optical frame of camera\n\
00284 # origin of frame should be optical center of cameara\n\
00285 # +x should point to the right in the image\n\
00286 # +y should point down in the image\n\
00287 # +z should point into to plane of the image\n\
00288 # If the frame_id here and the frame_id of the CameraInfo\n\
00289 # message associated with the image conflict\n\
00290 # the behavior is undefined\n\
00291 \n\
00292 uint32 height # image height, that is, number of rows\n\
00293 uint32 width # image width, that is, number of columns\n\
00294 \n\
00295 # The legal values for encoding are in file src/image_encodings.cpp\n\
00296 # If you want to standardize a new string format, join\n\
00297 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00298 \n\
00299 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00300 # taken from the list of strings in src/image_encodings.cpp\n\
00301 \n\
00302 uint8 is_bigendian # is this data bigendian?\n\
00303 uint32 step # Full row length in bytes\n\
00304 uint8[] data # actual matrix data, size is (step * rows)\n\
00305 \n\
00306 ================================================================================\n\
00307 MSG: sensor_msgs/CameraInfo\n\
00308 # This message defines meta information for a camera. It should be in a\n\
00309 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00310 # image topics named:\n\
00311 #\n\
00312 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00313 # image - monochrome, distorted\n\
00314 # image_color - color, distorted\n\
00315 # image_rect - monochrome, rectified\n\
00316 # image_rect_color - color, rectified\n\
00317 #\n\
00318 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00319 # for producing the four processed image topics from image_raw and\n\
00320 # camera_info. The meaning of the camera parameters are described in\n\
00321 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00322 #\n\
00323 # The image_geometry package provides a user-friendly interface to\n\
00324 # common operations using this meta information. If you want to, e.g.,\n\
00325 # project a 3d point into image coordinates, we strongly recommend\n\
00326 # using image_geometry.\n\
00327 #\n\
00328 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00329 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00330 # indicates an uncalibrated camera.\n\
00331 \n\
00332 #######################################################################\n\
00333 # Image acquisition info #\n\
00334 #######################################################################\n\
00335 \n\
00336 # Time of image acquisition, camera coordinate frame ID\n\
00337 Header header # Header timestamp should be acquisition time of image\n\
00338 # Header frame_id should be optical frame of camera\n\
00339 # origin of frame should be optical center of camera\n\
00340 # +x should point to the right in the image\n\
00341 # +y should point down in the image\n\
00342 # +z should point into the plane of the image\n\
00343 \n\
00344 \n\
00345 #######################################################################\n\
00346 # Calibration Parameters #\n\
00347 #######################################################################\n\
00348 # These are fixed during camera calibration. Their values will be the #\n\
00349 # same in all messages until the camera is recalibrated. Note that #\n\
00350 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00351 # #\n\
00352 # The internal parameters can be used to warp a raw (distorted) image #\n\
00353 # to: #\n\
00354 # 1. An undistorted image (requires D and K) #\n\
00355 # 2. A rectified image (requires D, K, R) #\n\
00356 # The projection matrix P projects 3D points into the rectified image.#\n\
00357 #######################################################################\n\
00358 \n\
00359 # The image dimensions with which the camera was calibrated. Normally\n\
00360 # this will be the full camera resolution in pixels.\n\
00361 uint32 height\n\
00362 uint32 width\n\
00363 \n\
00364 # The distortion model used. Supported models are listed in\n\
00365 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00366 # simple model of radial and tangential distortion - is sufficent.\n\
00367 string distortion_model\n\
00368 \n\
00369 # The distortion parameters, size depending on the distortion model.\n\
00370 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00371 float64[] D\n\
00372 \n\
00373 # Intrinsic camera matrix for the raw (distorted) images.\n\
00374 # [fx 0 cx]\n\
00375 # K = [ 0 fy cy]\n\
00376 # [ 0 0 1]\n\
00377 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00378 # coordinates using the focal lengths (fx, fy) and principal point\n\
00379 # (cx, cy).\n\
00380 float64[9] K # 3x3 row-major matrix\n\
00381 \n\
00382 # Rectification matrix (stereo cameras only)\n\
00383 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00384 # stereo image plane so that epipolar lines in both stereo images are\n\
00385 # parallel.\n\
00386 float64[9] R # 3x3 row-major matrix\n\
00387 \n\
00388 # Projection/camera matrix\n\
00389 # [fx' 0 cx' Tx]\n\
00390 # P = [ 0 fy' cy' Ty]\n\
00391 # [ 0 0 1 0]\n\
00392 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00393 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00394 # is the normal camera intrinsic matrix for the rectified image.\n\
00395 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00396 # coordinates using the focal lengths (fx', fy') and principal point\n\
00397 # (cx', cy') - these may differ from the values in K.\n\
00398 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00399 # also have R = the identity and P[1:3,1:3] = K.\n\
00400 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00401 # position of the optical center of the second camera in the first\n\
00402 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00403 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00404 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00405 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00406 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00407 # the rectified image is given by:\n\
00408 # [u v w]' = P * [X Y Z 1]'\n\
00409 # x = u / w\n\
00410 # y = v / w\n\
00411 # This holds for both images of a stereo pair.\n\
00412 float64[12] P # 3x4 row-major matrix\n\
00413 \n\
00414 \n\
00415 #######################################################################\n\
00416 # Operational Parameters #\n\
00417 #######################################################################\n\
00418 # These define the image region actually captured by the camera #\n\
00419 # driver. Although they affect the geometry of the output image, they #\n\
00420 # may be changed freely without recalibrating the camera. #\n\
00421 #######################################################################\n\
00422 \n\
00423 # Binning refers here to any camera setting which combines rectangular\n\
00424 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00425 # resolution of the output image to\n\
00426 # (width / binning_x) x (height / binning_y).\n\
00427 # The default values binning_x = binning_y = 0 is considered the same\n\
00428 # as binning_x = binning_y = 1 (no subsampling).\n\
00429 uint32 binning_x\n\
00430 uint32 binning_y\n\
00431 \n\
00432 # Region of interest (subwindow of full camera resolution), given in\n\
00433 # full resolution (unbinned) image coordinates. A particular ROI\n\
00434 # always denotes the same window of pixels on the camera sensor,\n\
00435 # regardless of binning settings.\n\
00436 # The default setting of roi (all values 0) is considered the same as\n\
00437 # full resolution (roi.width = width, roi.height = height).\n\
00438 RegionOfInterest roi\n\
00439 \n\
00440 ================================================================================\n\
00441 MSG: sensor_msgs/RegionOfInterest\n\
00442 # This message is used to specify a region of interest within an image.\n\
00443 #\n\
00444 # When used to specify the ROI setting of the camera when the image was\n\
00445 # taken, the height and width fields should either match the height and\n\
00446 # width fields for the associated image; or height = width = 0\n\
00447 # indicates that the full resolution image was captured.\n\
00448 \n\
00449 uint32 x_offset # Leftmost pixel of the ROI\n\
00450 # (0 if the ROI includes the left edge of the image)\n\
00451 uint32 y_offset # Topmost pixel of the ROI\n\
00452 # (0 if the ROI includes the top edge of the image)\n\
00453 uint32 height # Height of ROI\n\
00454 uint32 width # Width of ROI\n\
00455 \n\
00456 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00457 # ROI in this message. Typically this should be False if the full image\n\
00458 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00459 # used).\n\
00460 bool do_rectify\n\
00461 \n\
00462 "; }
00463 public:
00464 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00465
00466 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00467
00468 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00469 {
00470 ros::serialization::OStream stream(write_ptr, 1000000000);
00471 ros::serialization::serialize(stream, reference_frame_id);
00472 ros::serialization::serialize(stream, potential_models);
00473 ros::serialization::serialize(stream, cluster);
00474 ros::serialization::serialize(stream, region);
00475 return stream.getData();
00476 }
00477
00478 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00479 {
00480 ros::serialization::IStream stream(read_ptr, 1000000000);
00481 ros::serialization::deserialize(stream, reference_frame_id);
00482 ros::serialization::deserialize(stream, potential_models);
00483 ros::serialization::deserialize(stream, cluster);
00484 ros::serialization::deserialize(stream, region);
00485 return stream.getData();
00486 }
00487
00488 ROS_DEPRECATED virtual uint32_t serializationLength() const
00489 {
00490 uint32_t size = 0;
00491 size += ros::serialization::serializationLength(reference_frame_id);
00492 size += ros::serialization::serializationLength(potential_models);
00493 size += ros::serialization::serializationLength(cluster);
00494 size += ros::serialization::serializationLength(region);
00495 return size;
00496 }
00497
00498 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > Ptr;
00499 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> const> ConstPtr;
00500 };
00501 typedef ::object_manipulation_msgs::GraspableObject_<std::allocator<void> > GraspableObject;
00502
00503 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject> GraspableObjectPtr;
00504 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspableObject const> GraspableObjectConstPtr;
00505
00506
00507 template<typename ContainerAllocator>
00508 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> & v)
00509 {
00510 ros::message_operations::Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, "", v);
00511 return s;}
00512
00513 }
00514
00515 namespace ros
00516 {
00517 namespace message_traits
00518 {
00519 template<class ContainerAllocator>
00520 struct MD5Sum< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00521 static const char* value()
00522 {
00523 return "9df73c592d4de91f750a00a6702caa0d";
00524 }
00525
00526 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00527 static const uint64_t static_value1 = 0x9df73c592d4de91fULL;
00528 static const uint64_t static_value2 = 0x750a00a6702caa0dULL;
00529 };
00530
00531 template<class ContainerAllocator>
00532 struct DataType< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00533 static const char* value()
00534 {
00535 return "object_manipulation_msgs/GraspableObject";
00536 }
00537
00538 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00539 };
00540
00541 template<class ContainerAllocator>
00542 struct Definition< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> > {
00543 static const char* value()
00544 {
00545 return "# an object that the object_manipulator can work on\n\
00546 \n\
00547 # a graspable object can be represented in multiple ways. This message\n\
00548 # can contain all of them. Which one is actually used is up to the receiver\n\
00549 # of this message. When adding new representations, one must be careful that\n\
00550 # they have reasonable lightweight defaults indicating that that particular\n\
00551 # representation is not available.\n\
00552 \n\
00553 # the tf frame to be used as a reference frame when combining information from\n\
00554 # the different representations below\n\
00555 string reference_frame_id\n\
00556 \n\
00557 # potential recognition results from a database of models\n\
00558 # all poses are relative to the object reference pose\n\
00559 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00560 \n\
00561 # the point cloud itself\n\
00562 sensor_msgs/PointCloud cluster\n\
00563 \n\
00564 # a region of a PointCloud2 of interest\n\
00565 object_manipulation_msgs/SceneRegion region\n\
00566 \n\
00567 \n\
00568 ================================================================================\n\
00569 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00570 # Informs that a specific model from the Model Database has been \n\
00571 # identified at a certain location\n\
00572 \n\
00573 # the database id of the model\n\
00574 int32 model_id\n\
00575 \n\
00576 # the pose that it can be found in\n\
00577 geometry_msgs/PoseStamped pose\n\
00578 \n\
00579 # a measure of the confidence level in this detection result\n\
00580 float32 confidence\n\
00581 ================================================================================\n\
00582 MSG: geometry_msgs/PoseStamped\n\
00583 # A Pose with reference coordinate frame and timestamp\n\
00584 Header header\n\
00585 Pose pose\n\
00586 \n\
00587 ================================================================================\n\
00588 MSG: std_msgs/Header\n\
00589 # Standard metadata for higher-level stamped data types.\n\
00590 # This is generally used to communicate timestamped data \n\
00591 # in a particular coordinate frame.\n\
00592 # \n\
00593 # sequence ID: consecutively increasing ID \n\
00594 uint32 seq\n\
00595 #Two-integer timestamp that is expressed as:\n\
00596 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00597 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00598 # time-handling sugar is provided by the client library\n\
00599 time stamp\n\
00600 #Frame this data is associated with\n\
00601 # 0: no frame\n\
00602 # 1: global frame\n\
00603 string frame_id\n\
00604 \n\
00605 ================================================================================\n\
00606 MSG: geometry_msgs/Pose\n\
00607 # A representation of pose in free space, composed of postion and orientation. \n\
00608 Point position\n\
00609 Quaternion orientation\n\
00610 \n\
00611 ================================================================================\n\
00612 MSG: geometry_msgs/Point\n\
00613 # This contains the position of a point in free space\n\
00614 float64 x\n\
00615 float64 y\n\
00616 float64 z\n\
00617 \n\
00618 ================================================================================\n\
00619 MSG: geometry_msgs/Quaternion\n\
00620 # This represents an orientation in free space in quaternion form.\n\
00621 \n\
00622 float64 x\n\
00623 float64 y\n\
00624 float64 z\n\
00625 float64 w\n\
00626 \n\
00627 ================================================================================\n\
00628 MSG: sensor_msgs/PointCloud\n\
00629 # This message holds a collection of 3d points, plus optional additional\n\
00630 # information about each point.\n\
00631 \n\
00632 # Time of sensor data acquisition, coordinate frame ID.\n\
00633 Header header\n\
00634 \n\
00635 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00636 # in the frame given in the header.\n\
00637 geometry_msgs/Point32[] points\n\
00638 \n\
00639 # Each channel should have the same number of elements as points array,\n\
00640 # and the data in each channel should correspond 1:1 with each point.\n\
00641 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00642 ChannelFloat32[] channels\n\
00643 \n\
00644 ================================================================================\n\
00645 MSG: geometry_msgs/Point32\n\
00646 # This contains the position of a point in free space(with 32 bits of precision).\n\
00647 # It is recommeded to use Point wherever possible instead of Point32. \n\
00648 # \n\
00649 # This recommendation is to promote interoperability. \n\
00650 #\n\
00651 # This message is designed to take up less space when sending\n\
00652 # lots of points at once, as in the case of a PointCloud. \n\
00653 \n\
00654 float32 x\n\
00655 float32 y\n\
00656 float32 z\n\
00657 ================================================================================\n\
00658 MSG: sensor_msgs/ChannelFloat32\n\
00659 # This message is used by the PointCloud message to hold optional data\n\
00660 # associated with each point in the cloud. The length of the values\n\
00661 # array should be the same as the length of the points array in the\n\
00662 # PointCloud, and each value should be associated with the corresponding\n\
00663 # point.\n\
00664 \n\
00665 # Channel names in existing practice include:\n\
00666 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00667 # This is opposite to usual conventions but remains for\n\
00668 # historical reasons. The newer PointCloud2 message has no\n\
00669 # such problem.\n\
00670 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00671 # (R,G,B) values packed into the least significant 24 bits,\n\
00672 # in order.\n\
00673 # \"intensity\" - laser or pixel intensity.\n\
00674 # \"distance\"\n\
00675 \n\
00676 # The channel name should give semantics of the channel (e.g.\n\
00677 # \"intensity\" instead of \"value\").\n\
00678 string name\n\
00679 \n\
00680 # The values array should be 1-1 with the elements of the associated\n\
00681 # PointCloud.\n\
00682 float32[] values\n\
00683 \n\
00684 ================================================================================\n\
00685 MSG: object_manipulation_msgs/SceneRegion\n\
00686 # Point cloud\n\
00687 sensor_msgs/PointCloud2 cloud\n\
00688 \n\
00689 # Indices for the region of interest\n\
00690 int32[] mask\n\
00691 \n\
00692 # One of the corresponding 2D images, if applicable\n\
00693 sensor_msgs/Image image\n\
00694 \n\
00695 # The disparity image, if applicable\n\
00696 sensor_msgs/Image disparity_image\n\
00697 \n\
00698 # Camera info for the camera that took the image\n\
00699 sensor_msgs/CameraInfo cam_info\n\
00700 \n\
00701 ================================================================================\n\
00702 MSG: sensor_msgs/PointCloud2\n\
00703 # This message holds a collection of N-dimensional points, which may\n\
00704 # contain additional information such as normals, intensity, etc. The\n\
00705 # point data is stored as a binary blob, its layout described by the\n\
00706 # contents of the \"fields\" array.\n\
00707 \n\
00708 # The point cloud data may be organized 2d (image-like) or 1d\n\
00709 # (unordered). Point clouds organized as 2d images may be produced by\n\
00710 # camera depth sensors such as stereo or time-of-flight.\n\
00711 \n\
00712 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00713 # points).\n\
00714 Header header\n\
00715 \n\
00716 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00717 # 1 and width is the length of the point cloud.\n\
00718 uint32 height\n\
00719 uint32 width\n\
00720 \n\
00721 # Describes the channels and their layout in the binary data blob.\n\
00722 PointField[] fields\n\
00723 \n\
00724 bool is_bigendian # Is this data bigendian?\n\
00725 uint32 point_step # Length of a point in bytes\n\
00726 uint32 row_step # Length of a row in bytes\n\
00727 uint8[] data # Actual point data, size is (row_step*height)\n\
00728 \n\
00729 bool is_dense # True if there are no invalid points\n\
00730 \n\
00731 ================================================================================\n\
00732 MSG: sensor_msgs/PointField\n\
00733 # This message holds the description of one point entry in the\n\
00734 # PointCloud2 message format.\n\
00735 uint8 INT8 = 1\n\
00736 uint8 UINT8 = 2\n\
00737 uint8 INT16 = 3\n\
00738 uint8 UINT16 = 4\n\
00739 uint8 INT32 = 5\n\
00740 uint8 UINT32 = 6\n\
00741 uint8 FLOAT32 = 7\n\
00742 uint8 FLOAT64 = 8\n\
00743 \n\
00744 string name # Name of field\n\
00745 uint32 offset # Offset from start of point struct\n\
00746 uint8 datatype # Datatype enumeration, see above\n\
00747 uint32 count # How many elements in the field\n\
00748 \n\
00749 ================================================================================\n\
00750 MSG: sensor_msgs/Image\n\
00751 # This message contains an uncompressed image\n\
00752 # (0, 0) is at top-left corner of image\n\
00753 #\n\
00754 \n\
00755 Header header # Header timestamp should be acquisition time of image\n\
00756 # Header frame_id should be optical frame of camera\n\
00757 # origin of frame should be optical center of cameara\n\
00758 # +x should point to the right in the image\n\
00759 # +y should point down in the image\n\
00760 # +z should point into to plane of the image\n\
00761 # If the frame_id here and the frame_id of the CameraInfo\n\
00762 # message associated with the image conflict\n\
00763 # the behavior is undefined\n\
00764 \n\
00765 uint32 height # image height, that is, number of rows\n\
00766 uint32 width # image width, that is, number of columns\n\
00767 \n\
00768 # The legal values for encoding are in file src/image_encodings.cpp\n\
00769 # If you want to standardize a new string format, join\n\
00770 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00771 \n\
00772 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00773 # taken from the list of strings in src/image_encodings.cpp\n\
00774 \n\
00775 uint8 is_bigendian # is this data bigendian?\n\
00776 uint32 step # Full row length in bytes\n\
00777 uint8[] data # actual matrix data, size is (step * rows)\n\
00778 \n\
00779 ================================================================================\n\
00780 MSG: sensor_msgs/CameraInfo\n\
00781 # This message defines meta information for a camera. It should be in a\n\
00782 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00783 # image topics named:\n\
00784 #\n\
00785 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00786 # image - monochrome, distorted\n\
00787 # image_color - color, distorted\n\
00788 # image_rect - monochrome, rectified\n\
00789 # image_rect_color - color, rectified\n\
00790 #\n\
00791 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00792 # for producing the four processed image topics from image_raw and\n\
00793 # camera_info. The meaning of the camera parameters are described in\n\
00794 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00795 #\n\
00796 # The image_geometry package provides a user-friendly interface to\n\
00797 # common operations using this meta information. If you want to, e.g.,\n\
00798 # project a 3d point into image coordinates, we strongly recommend\n\
00799 # using image_geometry.\n\
00800 #\n\
00801 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00802 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00803 # indicates an uncalibrated camera.\n\
00804 \n\
00805 #######################################################################\n\
00806 # Image acquisition info #\n\
00807 #######################################################################\n\
00808 \n\
00809 # Time of image acquisition, camera coordinate frame ID\n\
00810 Header header # Header timestamp should be acquisition time of image\n\
00811 # Header frame_id should be optical frame of camera\n\
00812 # origin of frame should be optical center of camera\n\
00813 # +x should point to the right in the image\n\
00814 # +y should point down in the image\n\
00815 # +z should point into the plane of the image\n\
00816 \n\
00817 \n\
00818 #######################################################################\n\
00819 # Calibration Parameters #\n\
00820 #######################################################################\n\
00821 # These are fixed during camera calibration. Their values will be the #\n\
00822 # same in all messages until the camera is recalibrated. Note that #\n\
00823 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00824 # #\n\
00825 # The internal parameters can be used to warp a raw (distorted) image #\n\
00826 # to: #\n\
00827 # 1. An undistorted image (requires D and K) #\n\
00828 # 2. A rectified image (requires D, K, R) #\n\
00829 # The projection matrix P projects 3D points into the rectified image.#\n\
00830 #######################################################################\n\
00831 \n\
00832 # The image dimensions with which the camera was calibrated. Normally\n\
00833 # this will be the full camera resolution in pixels.\n\
00834 uint32 height\n\
00835 uint32 width\n\
00836 \n\
00837 # The distortion model used. Supported models are listed in\n\
00838 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00839 # simple model of radial and tangential distortion - is sufficent.\n\
00840 string distortion_model\n\
00841 \n\
00842 # The distortion parameters, size depending on the distortion model.\n\
00843 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00844 float64[] D\n\
00845 \n\
00846 # Intrinsic camera matrix for the raw (distorted) images.\n\
00847 # [fx 0 cx]\n\
00848 # K = [ 0 fy cy]\n\
00849 # [ 0 0 1]\n\
00850 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00851 # coordinates using the focal lengths (fx, fy) and principal point\n\
00852 # (cx, cy).\n\
00853 float64[9] K # 3x3 row-major matrix\n\
00854 \n\
00855 # Rectification matrix (stereo cameras only)\n\
00856 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00857 # stereo image plane so that epipolar lines in both stereo images are\n\
00858 # parallel.\n\
00859 float64[9] R # 3x3 row-major matrix\n\
00860 \n\
00861 # Projection/camera matrix\n\
00862 # [fx' 0 cx' Tx]\n\
00863 # P = [ 0 fy' cy' Ty]\n\
00864 # [ 0 0 1 0]\n\
00865 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00866 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00867 # is the normal camera intrinsic matrix for the rectified image.\n\
00868 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00869 # coordinates using the focal lengths (fx', fy') and principal point\n\
00870 # (cx', cy') - these may differ from the values in K.\n\
00871 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00872 # also have R = the identity and P[1:3,1:3] = K.\n\
00873 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00874 # position of the optical center of the second camera in the first\n\
00875 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00876 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00877 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00878 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00879 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00880 # the rectified image is given by:\n\
00881 # [u v w]' = P * [X Y Z 1]'\n\
00882 # x = u / w\n\
00883 # y = v / w\n\
00884 # This holds for both images of a stereo pair.\n\
00885 float64[12] P # 3x4 row-major matrix\n\
00886 \n\
00887 \n\
00888 #######################################################################\n\
00889 # Operational Parameters #\n\
00890 #######################################################################\n\
00891 # These define the image region actually captured by the camera #\n\
00892 # driver. Although they affect the geometry of the output image, they #\n\
00893 # may be changed freely without recalibrating the camera. #\n\
00894 #######################################################################\n\
00895 \n\
00896 # Binning refers here to any camera setting which combines rectangular\n\
00897 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00898 # resolution of the output image to\n\
00899 # (width / binning_x) x (height / binning_y).\n\
00900 # The default values binning_x = binning_y = 0 is considered the same\n\
00901 # as binning_x = binning_y = 1 (no subsampling).\n\
00902 uint32 binning_x\n\
00903 uint32 binning_y\n\
00904 \n\
00905 # Region of interest (subwindow of full camera resolution), given in\n\
00906 # full resolution (unbinned) image coordinates. A particular ROI\n\
00907 # always denotes the same window of pixels on the camera sensor,\n\
00908 # regardless of binning settings.\n\
00909 # The default setting of roi (all values 0) is considered the same as\n\
00910 # full resolution (roi.width = width, roi.height = height).\n\
00911 RegionOfInterest roi\n\
00912 \n\
00913 ================================================================================\n\
00914 MSG: sensor_msgs/RegionOfInterest\n\
00915 # This message is used to specify a region of interest within an image.\n\
00916 #\n\
00917 # When used to specify the ROI setting of the camera when the image was\n\
00918 # taken, the height and width fields should either match the height and\n\
00919 # width fields for the associated image; or height = width = 0\n\
00920 # indicates that the full resolution image was captured.\n\
00921 \n\
00922 uint32 x_offset # Leftmost pixel of the ROI\n\
00923 # (0 if the ROI includes the left edge of the image)\n\
00924 uint32 y_offset # Topmost pixel of the ROI\n\
00925 # (0 if the ROI includes the top edge of the image)\n\
00926 uint32 height # Height of ROI\n\
00927 uint32 width # Width of ROI\n\
00928 \n\
00929 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00930 # ROI in this message. Typically this should be False if the full image\n\
00931 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00932 # used).\n\
00933 bool do_rectify\n\
00934 \n\
00935 ";
00936 }
00937
00938 static const char* value(const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> &) { return value(); }
00939 };
00940
00941 }
00942 }
00943
00944 namespace ros
00945 {
00946 namespace serialization
00947 {
00948
00949 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >
00950 {
00951 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00952 {
00953 stream.next(m.reference_frame_id);
00954 stream.next(m.potential_models);
00955 stream.next(m.cluster);
00956 stream.next(m.region);
00957 }
00958
00959 ROS_DECLARE_ALLINONE_SERIALIZER;
00960 };
00961 }
00962 }
00963
00964 namespace ros
00965 {
00966 namespace message_operations
00967 {
00968
00969 template<class ContainerAllocator>
00970 struct Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >
00971 {
00972 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> & v)
00973 {
00974 s << indent << "reference_frame_id: ";
00975 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.reference_frame_id);
00976 s << indent << "potential_models[]" << std::endl;
00977 for (size_t i = 0; i < v.potential_models.size(); ++i)
00978 {
00979 s << indent << " potential_models[" << i << "]: ";
00980 s << std::endl;
00981 s << indent;
00982 Printer< ::household_objects_database_msgs::DatabaseModelPose_<ContainerAllocator> >::stream(s, indent + " ", v.potential_models[i]);
00983 }
00984 s << indent << "cluster: ";
00985 s << std::endl;
00986 Printer< ::sensor_msgs::PointCloud_<ContainerAllocator> >::stream(s, indent + " ", v.cluster);
00987 s << indent << "region: ";
00988 s << std::endl;
00989 Printer< ::object_manipulation_msgs::SceneRegion_<ContainerAllocator> >::stream(s, indent + " ", v.region);
00990 }
00991 };
00992
00993
00994 }
00995 }
00996
00997 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPABLEOBJECT_H
00998