Program Listing for File motion-dense.hpp

Return to documentation for file (include/pinocchio/spatial/motion-dense.hpp)

//
// Copyright (c) 2017-2020 CNRS INRIA
//

#ifndef __pinocchio_spatial_motion_dense_hpp__
#define __pinocchio_spatial_motion_dense_hpp__

#include "pinocchio/spatial/skew.hpp"

namespace pinocchio
{

  template<typename Derived>
  struct SE3GroupAction<MotionDense<Derived>>
  {
    typedef typename SE3GroupAction<Derived>::ReturnType ReturnType;
  };

  template<typename Derived, typename MotionDerived>
  struct MotionAlgebraAction<MotionDense<Derived>, MotionDerived>
  {
    typedef typename MotionAlgebraAction<Derived, MotionDerived>::ReturnType ReturnType;
  };

  template<typename Derived>
  class MotionDense : public MotionBase<Derived>
  {
  public:
    typedef MotionBase<Derived> Base;
    MOTION_TYPEDEF_TPL(Derived);
    typedef typename traits<Derived>::MotionRefType MotionRefType;

    using Base::angular;
    using Base::derived;
    using Base::isApprox;
    using Base::isZero;
    using Base::linear;

    Derived & setZero()
    {
      linear().setZero();
      angular().setZero();
      return derived();
    }
    Derived & setRandom()
    {
      linear().setRandom();
      angular().setRandom();
      return derived();
    }

    ActionMatrixType toActionMatrix_impl() const
    {
      ActionMatrixType X;
      X.template block<3, 3>(ANGULAR, ANGULAR) = X.template block<3, 3>(LINEAR, LINEAR) =
        skew(angular());
      X.template block<3, 3>(LINEAR, ANGULAR) = skew(linear());
      X.template block<3, 3>(ANGULAR, LINEAR).setZero();

      return X;
    }

    ActionMatrixType toDualActionMatrix_impl() const
    {
      ActionMatrixType X;
      X.template block<3, 3>(ANGULAR, ANGULAR) = X.template block<3, 3>(LINEAR, LINEAR) =
        skew(angular());
      X.template block<3, 3>(ANGULAR, LINEAR) = skew(linear());
      X.template block<3, 3>(LINEAR, ANGULAR).setZero();

      return X;
    }

    HomogeneousMatrixType toHomogeneousMatrix_impl() const
    {
      HomogeneousMatrixType M;
      M.template block<3, 3>(0, 0) = skew(angular());
      M.template block<3, 1>(0, 3) = linear();
      M.template block<1, 4>(3, 0).setZero();
      return M;
    }

    template<typename D2>
    bool isEqual_impl(const MotionDense<D2> & other) const
    {
      return linear() == other.linear() && angular() == other.angular();
    }

    template<typename D2>
    bool isEqual_impl(const MotionBase<D2> & other) const
    {
      return other.derived() == derived();
    }

    // Arithmetic operators
    template<typename D2>
    Derived & operator=(const MotionDense<D2> & other)
    {
      return derived().set(other.derived());
    }

    Derived & operator=(const MotionDense & other)
    {
      return derived().set(other.derived());
    }

    template<typename D2>
    Derived & set(const MotionDense<D2> & other)
    {
      linear() = other.linear();
      angular() = other.angular();
      return derived();
    }

    template<typename D2>
    Derived & operator=(const MotionBase<D2> & other)
    {
      other.derived().setTo(derived());
      return derived();
    }

    template<typename V6>
    Derived & operator=(const Eigen::MatrixBase<V6> & v)
    {
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(V6);
      assert(v.size() == 6);
      linear() = v.template segment<3>(LINEAR);
      angular() = v.template segment<3>(ANGULAR);
      return derived();
    }

    MotionPlain operator-() const
    {
      return derived().__opposite__();
    }
    template<typename M1>
    MotionPlain operator+(const MotionDense<M1> & v) const
    {
      return derived().__plus__(v.derived());
    }
    template<typename M1>
    MotionPlain operator-(const MotionDense<M1> & v) const
    {
      return derived().__minus__(v.derived());
    }

    template<typename M1>
    Derived & operator+=(const MotionDense<M1> & v)
    {
      return derived().__pequ__(v.derived());
    }
    template<typename M1>
    Derived & operator+=(const MotionBase<M1> & v)
    {
      v.derived().addTo(derived());
      return derived();
    }

    template<typename M1>
    Derived & operator-=(const MotionDense<M1> & v)
    {
      return derived().__mequ__(v.derived());
    }

    MotionPlain __opposite__() const
    {
      return MotionPlain(-linear(), -angular());
    }

    template<typename M1>
    MotionPlain __plus__(const MotionDense<M1> & v) const
    {
      return MotionPlain(linear() + v.linear(), angular() + v.angular());
    }

    template<typename M1>
    MotionPlain __minus__(const MotionDense<M1> & v) const
    {
      return MotionPlain(linear() - v.linear(), angular() - v.angular());
    }

    template<typename M1>
    Derived & __pequ__(const MotionDense<M1> & v)
    {
      linear() += v.linear();
      angular() += v.angular();
      return derived();
    }

    template<typename M1>
    Derived & __mequ__(const MotionDense<M1> & v)
    {
      linear() -= v.linear();
      angular() -= v.angular();
      return derived();
    }

    template<typename OtherScalar>
    MotionPlain __mult__(const OtherScalar & alpha) const
    {
      return MotionPlain(alpha * linear(), alpha * angular());
    }

    template<typename OtherScalar>
    MotionPlain __div__(const OtherScalar & alpha) const
    {
      return derived().__mult__((OtherScalar)(1) / alpha);
    }

    template<typename F1>
    Scalar dot(const ForceBase<F1> & phi) const
    {
      return phi.linear().dot(linear()) + phi.angular().dot(angular());
    }

    template<typename D>
    typename MotionAlgebraAction<D, Derived>::ReturnType cross_impl(const D & d) const
    {
      return d.motionAction(derived());
    }

    template<typename M1, typename M2>
    void motionAction(const MotionDense<M1> & v, MotionDense<M2> & mout) const
    {
      mout.linear() = v.linear().cross(angular()) + v.angular().cross(linear());
      mout.angular() = v.angular().cross(angular());
    }

    template<typename M1>
    MotionPlain motionAction(const MotionDense<M1> & v) const
    {
      MotionPlain res;
      motionAction(v, res);
      return res;
    }

    template<typename M2>
    bool isApprox(
      const MotionDense<M2> & m2,
      const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
    {
      return derived().isApprox_impl(m2, prec);
    }

    template<typename D2>
    bool isApprox_impl(
      const MotionDense<D2> & m2,
      const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
    {
      return linear().isApprox(m2.linear(), prec) && angular().isApprox(m2.angular(), prec);
    }

    bool isZero_impl(const Scalar & prec = Eigen::NumTraits<Scalar>::dummy_precision()) const
    {
      return linear().isZero(prec) && angular().isZero(prec);
    }

    template<typename S2, int O2, typename D2>
    void se3Action_impl(const SE3Tpl<S2, O2> & m, MotionDense<D2> & v) const
    {
      v.angular().noalias() = m.rotation() * angular();
      v.linear().noalias() = m.rotation() * linear() + m.translation().cross(v.angular());
    }

    template<typename S2, int O2>
    typename SE3GroupAction<Derived>::ReturnType se3Action_impl(const SE3Tpl<S2, O2> & m) const
    {
      typename SE3GroupAction<Derived>::ReturnType res;
      se3Action_impl(m, res);
      return res;
    }

    template<typename S2, int O2, typename D2>
    void se3ActionInverse_impl(const SE3Tpl<S2, O2> & m, MotionDense<D2> & v) const
    {
      v.linear().noalias() =
        m.rotation().transpose() * (linear() - m.translation().cross(angular()));
      v.angular().noalias() = m.rotation().transpose() * angular();
    }

    template<typename S2, int O2>
    typename SE3GroupAction<Derived>::ReturnType
    se3ActionInverse_impl(const SE3Tpl<S2, O2> & m) const
    {
      typename SE3GroupAction<Derived>::ReturnType res;
      se3ActionInverse_impl(m, res);
      return res;
    }

    void disp_impl(std::ostream & os) const
    {
      os << "  v = " << linear().transpose() << std::endl
         << "  w = " << angular().transpose() << std::endl;
    }

    MotionRefType ref()
    {
      return derived().ref();
    }

  protected:
    MotionDense() {};

    MotionDense(const MotionDense &) = delete;

  }; // class MotionDense

  template<typename M1, typename M2>
  typename traits<M1>::MotionPlain operator^(const MotionDense<M1> & v1, const MotionDense<M2> & v2)
  {
    return v1.derived().cross(v2.derived());
  }

  template<typename M1, typename F1>
  typename traits<F1>::ForcePlain operator^(const MotionDense<M1> & v, const ForceBase<F1> & f)
  {
    return v.derived().cross(f.derived());
  }

  template<typename M1>
  typename traits<M1>::MotionPlain
  operator*(const typename traits<M1>::Scalar alpha, const MotionDense<M1> & v)
  {
    return v * alpha;
  }

} // namespace pinocchio

#endif // ifndef __pinocchio_spatial_motion_dense_hpp__