Program Listing for File eiquadprog-rt.hxx

Return to documentation for file (include/eiquadprog/eiquadprog-rt.hxx)

//
// Copyright (c) 2017 CNRS
//
// This file is part of eiquadprog.
//
// eiquadprog is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
//(at your option) any later version.

// eiquadprog is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.

// You should have received a copy of the GNU Lesser General Public License
// along with eiquadprog.  If not, see <https://www.gnu.org/licenses/>.

#ifndef __eiquadprog_rt_hxx__
#define __eiquadprog_rt_hxx__

#include "eiquadprog/eiquadprog-utils.hxx"

namespace eiquadprog {

namespace solvers {

template <int nVars, int nEqCon, int nIneqCon>
RtEiquadprog<nVars, nEqCon, nIneqCon>::RtEiquadprog()
    : solver_return_(std::numeric_limits<double>::infinity()) {
  m_maxIter = DEFAULT_MAX_ITER;
  q = 0;  // size of the active set A
  // (containing the indices of the active constraints)
  is_inverse_provided_ = false;
}

template <int nVars, int nEqCon, int nIneqCon>
RtEiquadprog<nVars, nEqCon, nIneqCon>::~RtEiquadprog() {}

template <int nVars, int nEqCon, int nIneqCon>
bool RtEiquadprog<nVars, nEqCon, nIneqCon>::add_constraint(
    typename RtMatrixX<nVars, nVars>::d &R,
    typename RtMatrixX<nVars, nVars>::d &J, typename RtVectorX<nVars>::d &d,
    int &iq, double &R_norm) {
  //      int n=J.rows();
#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << "Add constraint " << iq << '/';
#endif
  int j, k;
  double cc, ss, h, t1, t2, xny;

#ifdef OPTIMIZE_ADD_CONSTRAINT
  Eigen::Vector2d cc_ss;
#endif

  /* we have to find the Givens rotation which will reduce the element
           d(j) to zero.
           if it is already zero we don't have to do anything, except of
           decreasing j */
  for (j = nVars - 1; j >= iq + 1; j--) {
    /* The Givens rotation is done with the matrix (cc cs, cs -cc).
                    If cc is one, then element (j) of d is zero compared with
       element (j - 1). Hence we don't have to do anything. If cc is zero, then
       we just have to switch column (j) and column (j - 1) of J. Since we only
       switch columns in J, we have to be careful how we update d depending on
       the sign of gs. Otherwise we have to apply the Givens rotation to these
       columns. The i - 1 element of d has to be updated to h. */
    cc = d(j - 1);
    ss = d(j);
    h = utils::distance(cc, ss);
    if (h == 0.0) continue;
    d(j) = 0.0;
    ss = ss / h;
    cc = cc / h;
    if (cc < 0.0) {
      cc = -cc;
      ss = -ss;
      d(j - 1) = -h;
    } else
      d(j - 1) = h;
    xny = ss / (1.0 + cc);

// #define OPTIMIZE_ADD_CONSTRAINT
#ifdef OPTIMIZE_ADD_CONSTRAINT  // the optimized code is actually slower than
                                // the original
    T1 = J.col(j - 1);
    cc_ss(0) = cc;
    cc_ss(1) = ss;
    J.col(j - 1).noalias() = J.template middleCols<2>(j - 1) * cc_ss;
    J.col(j) = xny * (T1 + J.col(j - 1)) - J.col(j);
#else
    // J.col(j-1) = J[:,j-1:j] * [cc; ss]
    for (k = 0; k < nVars; k++) {
      t1 = J(k, j - 1);
      t2 = J(k, j);
      J(k, j - 1) = t1 * cc + t2 * ss;
      J(k, j) = xny * (t1 + J(k, j - 1)) - t2;
    }
#endif
  }
  /* update the number of constraints added*/
  iq++;
  /* To update R we have to put the iq components of the d vector
into column iq - 1 of R
*/
  R.col(iq - 1).head(iq) = d.head(iq);
#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << iq << std::endl;
#endif

  if (std::abs(d(iq - 1)) <= std::numeric_limits<double>::epsilon() * R_norm)
    // problem degenerate
    return false;
  R_norm = std::max<double>(R_norm, std::abs(d(iq - 1)));
  return true;
}

template <int nVars, int nEqCon, int nIneqCon>
void RtEiquadprog<nVars, nEqCon, nIneqCon>::delete_constraint(
    typename RtMatrixX<nVars, nVars>::d &R,
    typename RtMatrixX<nVars, nVars>::d &J,
    typename RtVectorX<nIneqCon + nEqCon>::i &A,
    typename RtVectorX<nIneqCon + nEqCon>::d &u, int &iq, int l) {
  //      int n = J.rows();
#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << "Delete constraint " << l << ' ' << iq;
#endif
  int i, j, k;
  int qq = 0;
  double cc, ss, h, xny, t1, t2;

  /* Find the index qq for active constraint l to be removed */
  for (i = nEqCon; i < iq; i++)
    if (A(i) == l) {
      qq = i;
      break;
    }

  /* remove the constraint from the active set and the duals */
  for (i = qq; i < iq - 1; i++) {
    A(i) = A(i + 1);
    u(i) = u(i + 1);
    R.col(i) = R.col(i + 1);
  }

  A(iq - 1) = A(iq);
  u(iq - 1) = u(iq);
  A(iq) = 0;
  u(iq) = 0.0;
  for (j = 0; j < iq; j++) R(j, iq - 1) = 0.0;
  /* constraint has been fully removed */
  iq--;
#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << '/' << iq << std::endl;
#endif

  if (iq == 0) return;

  for (j = qq; j < iq; j++) {
    cc = R(j, j);
    ss = R(j + 1, j);
    h = utils::distance(cc, ss);
    if (h == 0.0) continue;
    cc = cc / h;
    ss = ss / h;
    R(j + 1, j) = 0.0;
    if (cc < 0.0) {
      R(j, j) = -h;
      cc = -cc;
      ss = -ss;
    } else
      R(j, j) = h;

    xny = ss / (1.0 + cc);
    for (k = j + 1; k < iq; k++) {
      t1 = R(j, k);
      t2 = R(j + 1, k);
      R(j, k) = t1 * cc + t2 * ss;
      R(j + 1, k) = xny * (t1 + R(j, k)) - t2;
    }
    for (k = 0; k < nVars; k++) {
      t1 = J(k, j);
      t2 = J(k, j + 1);
      J(k, j) = t1 * cc + t2 * ss;
      J(k, j + 1) = xny * (J(k, j) + t1) - t2;
    }
  }
}

template <int nVars, int nEqCon, int nIneqCon>
RtEiquadprog_status RtEiquadprog<nVars, nEqCon, nIneqCon>::solve_quadprog(
    const typename RtMatrixX<nVars, nVars>::d &Hess,
    const typename RtVectorX<nVars>::d &g0,
    const typename RtMatrixX<nEqCon, nVars>::d &CE,
    const typename RtVectorX<nEqCon>::d &ce0,
    const typename RtMatrixX<nIneqCon, nVars>::d &CI,
    const typename RtVectorX<nIneqCon>::d &ci0,
    typename RtVectorX<nVars>::d &x) {
  int i, k, l;    // indices
  int ip;         // index of the chosen violated constraint
  int iq;         // current number of active constraints
  double psi;     // current sum of constraint violations
  double c1;      // Hessian trace
  double c2;      // Hessian Chowlesky factor trace
  double ss;      // largest constraint violation (negative for violation)
  double R_norm;  // norm of matrix R
  const double inf = std::numeric_limits<double>::infinity();
  double t, t1, t2;
  /* t is the step length, which is the minimum of the partial step length t1
   * and the full step length t2 */

  iter = 0;  // active-set iteration number

  /*
   * Preprocessing phase
   */
  /* compute the trace of the original matrix Hess */
  c1 = Hess.trace();

  /* decompose the matrix Hess in the form LL^T */
  if (!is_inverse_provided_) {
    START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_DECOMPOSITION);
    chol_.compute(Hess);
    STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_DECOMPOSITION);
  }

  /* initialize the matrix R */
  d.setZero(nVars);
  R.setZero(nVars, nVars);
  R_norm = 1.0;

  /* compute the inverse of the factorized matrix Hess^-1, this is the initial
   * value for H */
  // m_J = L^-T
  if (!is_inverse_provided_) {
    START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_INVERSE);
    m_J.setIdentity(nVars, nVars);
#ifdef OPTIMIZE_HESSIAN_INVERSE
    chol_.matrixU().solveInPlace(m_J);
#else
    m_J = chol_.matrixU().solve(m_J);
#endif
    STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_CHOWLESKY_INVERSE);
  }

  c2 = m_J.trace();
#ifdef EIQGUADPROG_TRACE_SOLVER
  utils::print_matrix("m_J", m_J);
#endif

  /* c1 * c2 is an estimate for cond(Hess) */

  /*
   * Find the unconstrained minimizer of the quadratic form 0.5 * x Hess x + g0
   * x this is a feasible point in the dual space x = Hess^-1 * g0
   */
  START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_UNCONSTR_MINIM);
  if (is_inverse_provided_) {
    x = m_J * (m_J.transpose() * g0);
  } else {
#ifdef OPTIMIZE_UNCONSTR_MINIM
    x = -g0;
    chol_.solveInPlace(x);
  }
#else
    x = chol_.solve(g0);
  }
  x = -x;
#endif
  /* and compute the current solution value */
  f_value = 0.5 * g0.dot(x);
#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << "Unconstrained solution: " << f_value << std::endl;
  utils::print_vector("x", x);
#endif
  STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_UNCONSTR_MINIM);

  /* Add equality constraints to the working set A */

  START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR);
  iq = 0;
  for (i = 0; i < nEqCon; i++) {
    START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_1);
    // np = CE.row(i); // does not compile if nEqCon=0
    for (int tmp = 0; tmp < nVars; tmp++) np[tmp] = CE(i, tmp);
    compute_d(d, m_J, np);
    update_z(z, m_J, d, iq);
    update_r(R, r, d, iq);

#ifdef EIQGUADPROG_TRACE_SOLVER
    utils::print_matrix("R", R);
    utils::print_vector("z", z);
    utils::print_vector("r", r);
    utils::print_vector("d", d);
#endif

    /* compute full step length t2: i.e., the minimum step in primal space s.t.
    the contraint becomes feasible */
    t2 = 0.0;
    if (std::abs(z.dot(z)) >
        std::numeric_limits<double>::epsilon())  // i.e. z != 0
      t2 = (-np.dot(x) - ce0(i)) / z.dot(np);

    x += t2 * z;

    /* set u = u+ */
    u(iq) = t2;
    u.head(iq) -= t2 * r.head(iq);

    /* compute the new solution value */
    f_value += 0.5 * (t2 * t2) * z.dot(np);
    A(i) = -i - 1;
    STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_1);

    START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_2);
    if (!add_constraint(R, m_J, d, iq, R_norm)) {
      // Equality constraints are linearly dependent
      return RT_EIQUADPROG_REDUNDANT_EQUALITIES;
    }
    STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR_2);
  }
  STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_ADD_EQ_CONSTR);

  /* set iai = K \ A */
  for (i = 0; i < nIneqCon; i++) iai(i) = i;

#ifdef USE_WARM_START
  //      DEBUG_STREAM("Gonna warm start using previous active
  //      set:\n"<<A.transpose()<<"\n")
  for (i = nEqCon; i < q; i++) {
    iai(i - nEqCon) = -1;
    ip = A(i);
    np = CI.row(ip);
    compute_d(d, m_J, np);
    update_z(z, m_J, d, iq);
    update_r(R, r, d, iq);

    /* compute full step length t2: i.e., the minimum step in primal space s.t.
    the contraint becomes feasible */
    t2 = 0.0;
    if (std::abs(z.dot(z)) >
        std::numeric_limits<double>::epsilon())  // i.e. z != 0
      t2 = (-np.dot(x) - ci0(ip)) / z.dot(np);
    else
      DEBUG_STREAM("[WARM START] z=0\n")

    x += t2 * z;

    /* set u = u+ */
    u(iq) = t2;
    u.head(iq) -= t2 * r.head(iq);

    /* compute the new solution value */
    f_value += 0.5 * (t2 * t2) * z.dot(np);

    if (!add_constraint(R, m_J, d, iq, R_norm)) {
      // constraints are linearly dependent
      std::cerr << "[WARM START] Constraints are linearly dependent\n";
      return RT_EIQUADPROG_REDUNDANT_EQUALITIES;
    }
  }
#else

#endif

l1:
  START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1);
  iter++;
  if (iter >= m_maxIter) {
    q = iq;
    return RT_EIQUADPROG_MAX_ITER_REACHED;
  }

#ifdef EIQGUADPROG_TRACE_SOLVER
  utils::print_vector("x", x);
#endif
  /* step 1: choose a violated constraint */
  for (i = nEqCon; i < iq; i++) {
    ip = A(i);
    iai(ip) = -1;
  }

  /* compute s(x) = ci^T * x + ci0 for all elements of K \ A */
  START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_2);
  ss = 0.0;
  ip = 0; /* ip will be the index of the chosen violated constraint */

#ifdef OPTIMIZE_STEP_1_2
  s = ci0;
  s.noalias() += CI * x;
  iaexcl.setOnes();
  psi = (s.cwiseMin(RtVectorX<nIneqCon>::d::Zero())).sum();
#else
  psi = 0.0; /* this value will contain the sum of all infeasibilities */
  for (i = 0; i < nIneqCon; i++) {
    iaexcl(i) = 1;
    s(i) = CI.row(i).dot(x) + ci0(i);
    psi += std::min(0.0, s(i));
  }
#endif
  STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1_2);
#ifdef EIQGUADPROG_TRACE_SOLVER
  utils::print_vector("s", s);
#endif

  STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_1);

  if (std::abs(psi) <=
      nIneqCon * std::numeric_limits<double>::epsilon() * c1 * c2 * 100.0) {
    /* numerically there are not infeasibilities anymore */
    q = iq;
    //        DEBUG_STREAM("Optimal active
    //        set:\n"<<A.head(iq).transpose()<<"\n\n")
    return RT_EIQUADPROG_OPTIMAL;
  }

  /* save old values for u, x and A */
  u_old.head(iq) = u.head(iq);
  A_old.head(iq) = A.head(iq);
  x_old = x;

l2: /* Step 2: check for feasibility and determine a new S-pair */
  START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2);
  // find constraint with highest violation (what about normalizing
  // constraints?)
  for (i = 0; i < nIneqCon; i++) {
    if (s(i) < ss && iai(i) != -1 && iaexcl(i)) {
      ss = s(i);
      ip = i;
    }
  }
  if (ss >= 0.0) {
    q = iq;
    //        DEBUG_STREAM("Optimal active set:\n"<<A.transpose()<<"\n\n")
    return RT_EIQUADPROG_OPTIMAL;
  }

  /* set np = n(ip) */
  // np = CI.row(ip); // does not compile if nIneqCon=0
  for (int tmp = 0; tmp < nVars; tmp++) np[tmp] = CI(ip, tmp);
  /* set u = (u 0)^T */
  u(iq) = 0.0;
  /* add ip to the active set A */
  A(iq) = ip;

  //      DEBUG_STREAM("Add constraint "<<ip<<" to active set\n")

#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << "Trying with constraint " << ip << std::endl;
  utils::print_vector("np", np);
#endif
  STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2);

l2a: /* Step 2a: determine step direction */
  START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2A);
  /* compute z = H np: the step direction in the primal space (through m_J, see
   * the paper) */
  compute_d(d, m_J, np);
  //    update_z(z, m_J, d, iq);
  if (iq >= nVars) {
    //      throw std::runtime_error("iq >= m_J.cols()");
    z.setZero();
  } else {
    update_z(z, m_J, d, iq);
  }
  /* compute N* np (if q > 0): the negative of the step direction in the dual
   * space */
  update_r(R, r, d, iq);
#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << "Step direction z" << std::endl;
  utils::print_vector("z", z);
  utils::print_vector("r", r);
  utils::print_vector("u", u);
  utils::print_vector("d", d);
  utils::print_vector("A", A);
#endif
  STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2A);

  /* Step 2b: compute step length */
  START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2B);
  l = 0;
  /* Compute t1: partial step length (maximum step in dual space without
   * violating dual feasibility */
  t1 = inf; /* +inf */
  /* find the index l s.t. it reaches the minimum of u+(x) / r */
  // l: index of constraint to drop (maybe)
  for (k = nEqCon; k < iq; k++) {
    double tmp;
    if (r(k) > 0.0 && ((tmp = u(k) / r(k)) < t1)) {
      t1 = tmp;
      l = A(k);
    }
  }
  /* Compute t2: full step length (minimum step in primal space such that the
   * constraint ip becomes feasible */
  if (std::abs(z.dot(z)) >
      std::numeric_limits<double>::epsilon())  // i.e. z != 0
    t2 = -s(ip) / z.dot(np);
  else
    t2 = inf; /* +inf */

  /* the step is chosen as the minimum of t1 and t2 */
  t = std::min(t1, t2);
#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << "Step sizes: " << t << " (t1 = " << t1 << ", t2 = " << t2
            << ") ";
#endif
  STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2B);

  /* Step 2c: determine new S-pair and take step: */
  START_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
  /* case (i): no step in primal or dual space */
  if (t >= inf) {
    /* QPP is infeasible */
    q = iq;
    STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
    return RT_EIQUADPROG_UNBOUNDED;
  }
  /* case (ii): step in dual space */
  if (t2 >= inf) {
    /* set u = u +  t * [-r 1) and drop constraint l from the active set A */
    u.head(iq) -= t * r.head(iq);
    u(iq) += t;
    iai(l) = l;
    delete_constraint(R, m_J, A, u, iq, l);
#ifdef EIQGUADPROG_TRACE_SOLVER
    std::cerr << " in dual space: " << f_value << std::endl;
    utils::print_vector("x", x);
    utils::print_vector("z", z);
    utils::print_vector("A", A);
#endif
    STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
    goto l2a;
  }

  /* case (iii): step in primal and dual space */
  x += t * z;
  /* update the solution value */
  f_value += t * z.dot(np) * (0.5 * t + u(iq));

  u.head(iq) -= t * r.head(iq);
  u(iq) += t;

#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << " in both spaces: " << f_value << std::endl;
  utils::print_vector("x", x);
  utils::print_vector("u", u);
  utils::print_vector("r", r);
  utils::print_vector("A", A);
#endif

  if (t == t2) {
#ifdef EIQGUADPROG_TRACE_SOLVER
    std::cerr << "Full step has taken " << t << std::endl;
    utils::print_vector("x", x);
#endif
    /* full step has taken */
    /* add constraint ip to the active set*/
    if (!add_constraint(R, m_J, d, iq, R_norm)) {
      iaexcl(ip) = 0;
      delete_constraint(R, m_J, A, u, iq, ip);
#ifdef EIQGUADPROG_TRACE_SOLVER
      utils::print_matrix("R", R);
      utils::print_vector("A", A);
#endif
      for (i = 0; i < nIneqCon; i++) iai(i) = i;
      for (i = 0; i < iq; i++) {
        A(i) = A_old(i);
        iai(A(i)) = -1;
        u(i) = u_old(i);
      }
      x = x_old;
      STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
      goto l2; /* go to step 2 */
    } else
      iai(ip) = -1;
#ifdef EIQGUADPROG_TRACE_SOLVER
    utils::print_matrix("R", R);
    utils::print_vector("A", A);
#endif
    STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);
    goto l1;
  }

  /* a partial step has been taken => drop constraint l */
  iai(l) = l;
  delete_constraint(R, m_J, A, u, iq, l);
  // s(ip) = CI.row(ip).dot(x) + ci0(ip); // does not compile if nIneqCon=0
  s(ip) = ci0(ip);
  for (int tmp = 0; tmp < nVars; tmp++) s(ip) += CI(ip, tmp) * x[tmp];

#ifdef EIQGUADPROG_TRACE_SOLVER
  std::cerr << "Partial step has taken " << t << std::endl;
  utils::print_vector("x", x);
  utils::print_matrix("R", R);
  utils::print_vector("A", A);
  utils::print_vector("s", s);
#endif
  STOP_PROFILER_EIQUADPROG_RT(PROFILE_EIQUADPROG_STEP_2C);

  goto l2a;
}
} /* namespace solvers */
} /* namespace eiquadprog */
#endif /* __eiquadprog_rt_hxx__ */