autotuned_index.h
Go to the documentation of this file.
1 /***********************************************************************
2  * Software License Agreement (BSD License)
3  *
4  * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
5  * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
6  *
7  * THE BSD LICENSE
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  * notice, this list of conditions and the following disclaimer in the
17  * documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *************************************************************************/
30 #ifndef RTABMAP_FLANN_AUTOTUNED_INDEX_H_
31 #define RTABMAP_FLANN_AUTOTUNED_INDEX_H_
32 
33 #include "rtflann/general.h"
37 #include "rtflann/util/sampling.h"
43 #include "rtflann/util/logger.h"
44 
45 
46 namespace rtflann
47 {
48 
49 template<typename Distance>
50 inline NNIndex<Distance>*
51  create_index_by_type(const flann_algorithm_t index_type,
52  const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance = Distance());
53 
54 
55 struct AutotunedIndexParams : public IndexParams
56 {
57  AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1)
58  {
59  (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED;
60  // precision desired (used for autotuning, -1 otherwise)
61  (*this)["target_precision"] = target_precision;
62  // build tree time weighting factor
63  (*this)["build_weight"] = build_weight;
64  // index memory weighting factor
65  (*this)["memory_weight"] = memory_weight;
66  // what fraction of the dataset to use for autotuning
67  (*this)["sample_fraction"] = sample_fraction;
68  }
69 };
70 
71 
72 template <typename Distance>
73 class AutotunedIndex : public NNIndex<Distance>
74 {
75 public:
76  typedef typename Distance::ElementType ElementType;
77  typedef typename Distance::ResultType DistanceType;
78 
79  typedef NNIndex<Distance> BaseClass;
80 
81  typedef AutotunedIndex<Distance> IndexType;
82 
83  typedef bool needs_kdtree_distance;
84 
85  AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
86  BaseClass(params, d), bestIndex_(NULL), speedup_(0), dataset_(inputData)
87  {
88  target_precision_ = get_param(params, "target_precision",0.8f);
89  build_weight_ = get_param(params,"build_weight", 0.01f);
90  memory_weight_ = get_param(params, "memory_weight", 0.0f);
91  sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
92  }
93 
94  AutotunedIndex(const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
96  {
97  target_precision_ = get_param(params, "target_precision",0.8f);
98  build_weight_ = get_param(params,"build_weight", 0.01f);
99  memory_weight_ = get_param(params, "memory_weight", 0.0f);
100  sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
101  }
102 
103  AutotunedIndex(const AutotunedIndex& other) : BaseClass(other),
112  {
113  bestIndex_ = other.bestIndex_->clone();
114  }
115 
117  {
118  this->swap(other);
119  return * this;
120  }
121 
122  virtual ~AutotunedIndex()
123  {
124  delete bestIndex_;
125  }
126 
127  BaseClass* clone() const
128  {
129  return new AutotunedIndex(*this);
130  }
131 
135  void buildIndex()
136  {
138  Logger::info("----------------------------------------------------\n");
139  Logger::info("Autotuned parameters:\n");
142  Logger::info("----------------------------------------------------\n");
143 
144  flann_algorithm_t index_type = get_param<flann_algorithm_t>(bestParams_,"algorithm");
146  bestIndex_->buildIndex();
148  Logger::info("----------------------------------------------------\n");
149  Logger::info("Search parameters:\n");
152  Logger::info("----------------------------------------------------\n");
153  bestParams_["search_params"] = bestSearchParams_;
154  bestParams_["speedup"] = speedup_;
155  }
156 
157  void buildIndex(const Matrix<ElementType>& dataset)
158  {
159  dataset_ = dataset;
160  this->buildIndex();
161  }
162 
163 
164  void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
165  {
166  if (bestIndex_) {
167  bestIndex_->addPoints(points, rebuild_threshold);
168  }
169  }
170 
171  void removePoint(size_t id)
172  {
173  if (bestIndex_) {
174  bestIndex_->removePoint(id);
175  }
176  }
177 
178 
179  template<typename Archive>
180  void serialize(Archive& ar)
181  {
182  ar.setObject(this);
183 
184  ar & *static_cast<NNIndex<Distance>*>(this);
185 
186  ar & target_precision_;
187  ar & build_weight_;
188  ar & memory_weight_;
189  ar & sample_fraction_;
190 
191  flann_algorithm_t index_type;
192  if (Archive::is_saving::value) {
193  index_type = get_param<flann_algorithm_t>(bestParams_,"algorithm");
194  }
195  ar & index_type;
197 
198  if (Archive::is_loading::value) {
199  bestParams_["algorithm"] = index_type;
200 
201  index_params_["algorithm"] = getType();
202  index_params_["target_precision_"] = target_precision_;
203  index_params_["build_weight_"] = build_weight_;
204  index_params_["memory_weight_"] = memory_weight_;
205  index_params_["sample_fraction_"] = sample_fraction_;
206  }
207  }
208 
209  void saveIndex(FILE* stream)
210  {
211  {
213  sa & *this;
214  }
215 
216  bestIndex_->saveIndex(stream);
217  }
218 
219  void loadIndex(FILE* stream)
220  {
221  {
222  serialization::LoadArchive la(stream);
223  la & *this;
224  }
225 
227  flann_algorithm_t index_type = get_param<flann_algorithm_t>(bestParams_,"algorithm");
228  bestIndex_ = create_index_by_type<Distance>((flann_algorithm_t)index_type, dataset_, params, distance_);
229  bestIndex_->loadIndex(stream);
230  }
231 
232  int knnSearch(const Matrix<ElementType>& queries,
233  Matrix<size_t>& indices,
234  Matrix<DistanceType>& dists,
235  size_t knn,
236  const SearchParams& params) const
237  {
238  if (params.checks == FLANN_CHECKS_AUTOTUNED) {
239  return bestIndex_->knnSearch(queries, indices, dists, knn, bestSearchParams_);
240  }
241  else {
242  return bestIndex_->knnSearch(queries, indices, dists, knn, params);
243  }
244  }
245 
246  int knnSearch(const Matrix<ElementType>& queries,
247  std::vector< std::vector<size_t> >& indices,
248  std::vector<std::vector<DistanceType> >& dists,
249  size_t knn,
250  const SearchParams& params) const
251  {
252  if (params.checks == FLANN_CHECKS_AUTOTUNED) {
253  return bestIndex_->knnSearch(queries, indices, dists, knn, bestSearchParams_);
254  }
255  else {
256  return bestIndex_->knnSearch(queries, indices, dists, knn, params);
257  }
258 
259  }
260 
261  int radiusSearch(const Matrix<ElementType>& queries,
262  Matrix<size_t>& indices,
263  Matrix<DistanceType>& dists,
264  DistanceType radius,
265  const SearchParams& params) const
266  {
267  if (params.checks == FLANN_CHECKS_AUTOTUNED) {
268  return bestIndex_->radiusSearch(queries, indices, dists, radius, bestSearchParams_);
269  }
270  else {
271  return bestIndex_->radiusSearch(queries, indices, dists, radius, params);
272  }
273  }
274 
275  int radiusSearch(const Matrix<ElementType>& queries,
276  std::vector< std::vector<size_t> >& indices,
277  std::vector<std::vector<DistanceType> >& dists,
278  DistanceType radius,
279  const SearchParams& params) const
280  {
281  if (params.checks == FLANN_CHECKS_AUTOTUNED) {
282  return bestIndex_->radiusSearch(queries, indices, dists, radius, bestSearchParams_);
283  }
284  else {
285  return bestIndex_->radiusSearch(queries, indices, dists, radius, params);
286  }
287  }
288 
289 
290 
294  void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) const
295  {
296  // should not get here
297  assert(false);
298  }
299 
300  IndexParams getParameters() const
301  {
302  return bestParams_;
303  }
304 
306  {
307  return bestSearchParams_;
308  }
309 
310  FLANN_DEPRECATED float getSpeedup() const
311  {
312  return speedup_;
313  }
314 
315 
319  size_t size() const
320  {
321  return bestIndex_->size();
322  }
323 
327  size_t veclen() const
328  {
329  return bestIndex_->veclen();
330  }
331 
335  int usedMemory() const
336  {
337  return bestIndex_->usedMemory();
338  }
339 
343  flann_algorithm_t getType() const
344  {
345  return FLANN_INDEX_AUTOTUNED;
346  }
347 
348 protected:
349  void buildIndexImpl()
350  {
351  /* nothing to do here */
352  }
353 
354  void freeIndex()
355  {
356  /* nothing to do here */
357  }
358 
359 private:
360 
361  struct CostData
362  {
364  float buildTimeCost;
365  float memoryCost;
366  float totalCost;
368  };
369 
370  void evaluate_kmeans(CostData& cost)
371  {
373  int checks;
374  const int nn = 1;
375 
376  Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n",
377  get_param<int>(cost.params,"iterations"),
378  get_param<int>(cost.params,"branching"));
379  KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_);
380  // measure index build time
381  t.start();
382  kmeans.buildIndex();
383  t.stop();
384  float buildTime = (float)t.value;
385 
386  // measure search time
387  float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
388 
389  float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
390  cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory;
391  cost.searchTimeCost = searchTime;
392  cost.buildTimeCost = buildTime;
393  Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_);
394  }
395 
396 
397  void evaluate_kdtree(CostData& cost)
398  {
400  int checks;
401  const int nn = 1;
402 
403  Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees"));
405 
406  t.start();
407  kdtree.buildIndex();
408  t.stop();
409  float buildTime = (float)t.value;
410 
411  //measure search time
413 
414  float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
415  cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory;
416  cost.searchTimeCost = searchTime;
417  cost.buildTimeCost = buildTime;
418  Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime);
419  }
420 
421 
422  // struct KMeansSimpleDownhillFunctor {
423  //
424  // Autotune& autotuner;
425  // KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
426  //
427  // float operator()(int* params) {
428  //
429  // float maxFloat = numeric_limits<float>::max();
430  //
431  // if (params[0]<2) return maxFloat;
432  // if (params[1]<0) return maxFloat;
433  //
434  // CostData c;
435  // c.params["algorithm"] = KMEANS;
436  // c.params["centers-init"] = CENTERS_RANDOM;
437  // c.params["branching"] = params[0];
438  // c.params["max-iterations"] = params[1];
439  //
440  // autotuner.evaluate_kmeans(c);
441  //
442  // return c.timeCost;
443  //
444  // }
445  // };
446  //
447  // struct KDTreeSimpleDownhillFunctor {
448  //
449  // Autotune& autotuner;
450  // KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
451  //
452  // float operator()(int* params) {
453  // float maxFloat = numeric_limits<float>::max();
454  //
455  // if (params[0]<1) return maxFloat;
456  //
457  // CostData c;
458  // c.params["algorithm"] = KDTREE;
459  // c.params["trees"] = params[0];
460  //
461  // autotuner.evaluate_kdtree(c);
462  //
463  // return c.timeCost;
464  //
465  // }
466  // };
467 
468 
469 
470  void optimizeKMeans(std::vector<CostData>& costs)
471  {
472  Logger::info("KMEANS, Step 1: Exploring parameter space\n");
473 
474  // explore kmeans parameters space using combinations of the parameters below
475  int maxIterations[] = { 1, 5, 10, 15 };
476  int branchingFactors[] = { 16, 32, 64, 128, 256 };
477 
478  int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors);
479  costs.reserve(costs.size() + kmeansParamSpaceSize);
480 
481  // evaluate kmeans for all parameter combinations
482  for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) {
483  for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) {
484  CostData cost;
485  cost.params["algorithm"] = FLANN_INDEX_KMEANS;
486  cost.params["centers_init"] = FLANN_CENTERS_RANDOM;
487  cost.params["iterations"] = maxIterations[i];
488  cost.params["branching"] = branchingFactors[j];
489 
490  evaluate_kmeans(cost);
491  costs.push_back(cost);
492  }
493  }
494 
495  // Logger::info("KMEANS, Step 2: simplex-downhill optimization\n");
496  //
497  // const int n = 2;
498  // // choose initial simplex points as the best parameters so far
499  // int kmeansNMPoints[n*(n+1)];
500  // float kmeansVals[n+1];
501  // for (int i=0;i<n+1;++i) {
502  // kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
503  // kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
504  // kmeansVals[i] = kmeansCosts[i].timeCost;
505  // }
506  // KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
507  // // run optimization
508  // optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
509  // // store results
510  // for (int i=0;i<n+1;++i) {
511  // kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
512  // kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
513  // kmeansCosts[i].timeCost = kmeansVals[i];
514  // }
515  }
516 
517 
518  void optimizeKDTree(std::vector<CostData>& costs)
519  {
520  Logger::info("KD-TREE, Step 1: Exploring parameter space\n");
521 
522  // explore kd-tree parameters space using the parameters below
523  int testTrees[] = { 1, 4, 8, 16, 32 };
524 
525  // evaluate kdtree for all parameter combinations
526  for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
527  CostData cost;
528  cost.params["algorithm"] = FLANN_INDEX_KDTREE;
529  cost.params["trees"] = testTrees[i];
530 
531  evaluate_kdtree(cost);
532  costs.push_back(cost);
533  }
534 
535  // Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n");
536  //
537  // const int n = 1;
538  // // choose initial simplex points as the best parameters so far
539  // int kdtreeNMPoints[n*(n+1)];
540  // float kdtreeVals[n+1];
541  // for (int i=0;i<n+1;++i) {
542  // kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
543  // kdtreeVals[i] = kdtreeCosts[i].timeCost;
544  // }
545  // KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
546  // // run optimization
547  // optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
548  // // store results
549  // for (int i=0;i<n+1;++i) {
550  // kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
551  // kdtreeCosts[i].timeCost = kdtreeVals[i];
552  // }
553  }
554 
561  {
562  std::vector<CostData> costs;
563 
564  int sampleSize = int(sample_fraction_ * dataset_.rows);
565  int testSampleSize = std::min(sampleSize / 10, 1000);
566 
567  Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_);
568 
569  // For a very small dataset, it makes no sense to build any fancy index, just
570  // use linear search
571  if (testSampleSize < 10) {
572  Logger::info("Choosing linear, dataset too small\n");
573  return LinearIndexParams();
574  }
575 
576  // We use a fraction of the original dataset to speedup the autotune algorithm
577  sampledDataset_ = random_sample(dataset_, sampleSize);
578  // We use a cross-validation approach, first we sample a testset from the dataset
579  testDataset_ = random_sample(sampledDataset_, testSampleSize, true);
580 
581  // We compute the ground truth using linear search
582  Logger::info("Computing ground truth... \n");
584  StartStopTimer t;
585  int repeats = 0;
586  t.reset();
587  while (t.value<0.2) {
588  repeats++;
589  t.start();
590  compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_);
591  t.stop();
592  }
593 
594  CostData linear_cost;
595  linear_cost.searchTimeCost = (float)t.value/repeats;
596  linear_cost.buildTimeCost = 0;
597  linear_cost.memoryCost = 0;
598  linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR;
599 
600  costs.push_back(linear_cost);
601 
602  // Start parameter autotune process
603  Logger::info("Autotuning parameters...\n");
604 
605  optimizeKMeans(costs);
606  optimizeKDTree(costs);
607 
608  float bestTimeCost = costs[0].buildTimeCost * build_weight_ + costs[0].searchTimeCost;
609  for (size_t i = 0; i < costs.size(); ++i) {
610  float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost;
611  Logger::debug("Time cost: %g\n", timeCost);
612  if (timeCost < bestTimeCost) {
613  bestTimeCost = timeCost;
614  }
615  }
616  Logger::debug("Best time cost: %g\n", bestTimeCost);
617 
618  IndexParams bestParams = costs[0].params;
619  if (bestTimeCost > 0) {
620  float bestCost = (costs[0].buildTimeCost * build_weight_ + costs[0].searchTimeCost) / bestTimeCost;
621  for (size_t i = 0; i < costs.size(); ++i) {
622  float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost +
623  memory_weight_ * costs[i].memoryCost;
624  Logger::debug("Cost: %g\n", crtCost);
625  if (crtCost < bestCost) {
626  bestCost = crtCost;
627  bestParams = costs[i].params;
628  }
629  }
630  Logger::debug("Best cost: %g\n", bestCost);
631  }
632 
633  delete[] gt_matches_.ptr();
634  delete[] testDataset_.ptr();
635  delete[] sampledDataset_.ptr();
636 
637  return bestParams;
638  }
639 
640 
641 
647  float estimateSearchParams(SearchParams& searchParams)
648  {
649  const int nn = 1;
650  const size_t SAMPLE_COUNT = 1000;
651 
652  assert(bestIndex_ != NULL); // must have a valid index
653 
654  float speedup = 0;
655 
656  int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT);
657  if (samples > 0) {
658  Matrix<ElementType> testDataset = random_sample(dataset_, samples);
659 
660  Logger::info("Computing ground truth\n");
661 
662  // we need to compute the ground truth first
663  Matrix<size_t> gt_matches(new size_t[testDataset.rows], testDataset.rows, 1);
664  StartStopTimer t;
665  int repeats = 0;
666  t.reset();
667  while (t.value<0.2) {
668  repeats++;
669  t.start();
670  compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_);
671  t.stop();
672  }
673  float linear = (float)t.value/repeats;
674 
675  int checks;
676  Logger::info("Estimating number of checks\n");
677 
678  float searchTime;
679  float cb_index;
680  if (bestIndex_->getType() == FLANN_INDEX_KMEANS) {
681  Logger::info("KMeans algorithm, estimating cluster border factor\n");
682  KMeansIndex<Distance>* kmeans = static_cast<KMeansIndex<Distance>*>(bestIndex_);
683  float bestSearchTime = -1;
684  float best_cb_index = -1;
685  int best_checks = -1;
686  for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) {
687  kmeans->set_cb_index(cb_index);
688  searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
689  if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) {
690  bestSearchTime = searchTime;
691  best_cb_index = cb_index;
692  best_checks = checks;
693  }
694  }
695  searchTime = bestSearchTime;
696  cb_index = best_cb_index;
697  checks = best_checks;
698 
699  kmeans->set_cb_index(best_cb_index);
700  Logger::info("Optimum cb_index: %g\n", cb_index);
701  bestParams_["cb_index"] = cb_index;
702  }
703  else {
704  searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
705  }
706 
707  Logger::info("Required number of checks: %d \n", checks);
708  searchParams.checks = checks;
709 
710  speedup = linear / searchTime;
711 
712  delete[] gt_matches.ptr();
713  delete[] testDataset.ptr();
714  }
715 
716  return speedup;
717  }
718 
719 
720  void swap(AutotunedIndex& other)
721  {
722  BaseClass::swap(other);
723  std::swap(bestIndex_, other.bestIndex_);
724  std::swap(bestParams_, other.bestParams_);
725  std::swap(bestSearchParams_, other.bestSearchParams_);
726  std::swap(speedup_, other.speedup_);
727  std::swap(dataset_, other.dataset_);
728  std::swap(target_precision_, other.target_precision_);
729  std::swap(build_weight_, other.build_weight_);
730  std::swap(memory_weight_, other.memory_weight_);
731  std::swap(sample_fraction_, other.sample_fraction_);
732  }
733 
734 private:
735  NNIndex<Distance>* bestIndex_;
736 
738  SearchParams bestSearchParams_;
739 
743 
744  float speedup_;
745 
750 
754  float target_precision_;
755  float build_weight_;
756  float memory_weight_;
757  float sample_fraction_;
758 
760 };
761 }
762 
763 #endif /* RTABMAP_FLANN_AUTOTUNED_INDEX_H_ */
rtflann::AutotunedIndex::evaluate_kmeans
void evaluate_kmeans(CostData &cost)
Definition: autotuned_index.h:398
glm::min
GLM_FUNC_DECL genType min(genType const &x, genType const &y)
int
int
linear_index.h
kdtree_single_index.h
rtflann::AutotunedIndex::radiusSearch
int radiusSearch(const Matrix< ElementType > &queries, Matrix< size_t > &indices, Matrix< DistanceType > &dists, DistanceType radius, const SearchParams &params) const
Definition: autotuned_index.h:289
general.h
rtflann::ResultSet
Definition: result_set.h:110
rtflann::AutotunedIndex::target_precision_
float target_precision_
Definition: autotuned_index.h:782
kmeans_index.h
rtflann::StartStopTimer
Definition: timer.h:73
rtflann::AutotunedIndex::DistanceType
Distance::ResultType DistanceType
Definition: autotuned_index.h:105
rtflann::serialization::SaveArchive
Definition: serialization.h:376
rtflann::AutotunedIndex::loadIndex
void loadIndex(FILE *stream)
Definition: autotuned_index.h:247
FLANN_DEPRECATED
#define FLANN_DEPRECATED
Definition: defines.h:60
rtflann::AutotunedIndex::IndexType
AutotunedIndex< Distance > IndexType
Definition: autotuned_index.h:109
knn
int knn
rtflann::AutotunedIndex::removePoint
void removePoint(size_t id)
Definition: autotuned_index.h:199
rtflann::AutotunedIndex::BaseClass
NNIndex< Distance > BaseClass
Definition: autotuned_index.h:107
logger.h
stream
stream
rtflann::Matrix_::cols
size_t cols
Definition: matrix.h:101
sampling.h
rtflann::get_param
T get_param(const IndexParams &params, std::string name, const T &default_value)
Definition: params.h:121
rtflann::AutotunedIndex::sample_fraction_
float sample_fraction_
Definition: autotuned_index.h:785
rtflann::FLANN_INDEX_KDTREE
@ FLANN_INDEX_KDTREE
Definition: defines.h:82
rtflann::AutotunedIndex::AutotunedIndex
AutotunedIndex(const Matrix< ElementType > &inputData, const IndexParams &params=AutotunedIndexParams(), Distance d=Distance())
Definition: autotuned_index.h:113
rtflann::AutotunedIndexParams
Definition: autotuned_index.h:83
rtflann::FLANN_LOG_INFO
@ FLANN_LOG_INFO
Definition: defines.h:109
rtflann::AutotunedIndex::bestIndex_
NNIndex< Distance > * bestIndex_
Definition: autotuned_index.h:763
ground_truth.h
rtflann::AutotunedIndex::CostData::memoryCost
float memoryCost
Definition: autotuned_index.h:393
nn_index.h
rtflann::AutotunedIndex::optimizeKMeans
void optimizeKMeans(std::vector< CostData > &costs)
Definition: autotuned_index.h:498
rtflann::AutotunedIndex::build_weight_
float build_weight_
Definition: autotuned_index.h:783
rtflann::AutotunedIndex::swap
void swap(AutotunedIndex &other)
Definition: autotuned_index.h:748
rtflann::AutotunedIndex::getSpeedup
FLANN_DEPRECATED float getSpeedup() const
Definition: autotuned_index.h:338
rtflann::AutotunedIndex::veclen
size_t veclen() const
Definition: autotuned_index.h:355
rtflann::AutotunedIndex::CostData
Definition: autotuned_index.h:389
rtflann::AutotunedIndex::CostData::params
IndexParams params
Definition: autotuned_index.h:395
indices
indices
rtflann::test_index_precision
float test_index_precision(Index &index, const Matrix< typename Distance::ElementType > &inputData, const Matrix< typename Distance::ElementType > &testData, const Matrix< size_t > &matches, float precision, int &checks, const Distance &distance, int nn=1, int skipMatches=0)
Definition: index_testing.h:187
rtflann::KMeansIndex::set_cb_index
void set_cb_index(float index)
Definition: kmeans_index.h:227
rtflann::AutotunedIndex::CostData::buildTimeCost
float buildTimeCost
Definition: autotuned_index.h:392
rtflann::FLANN_CENTERS_RANDOM
@ FLANN_CENTERS_RANDOM
Definition: defines.h:97
rtflann::Matrix::ptr
T * ptr() const
Definition: matrix.h:155
rtflann::KMeansIndex
Definition: kmeans_index.h:111
rtflann::AutotunedIndex::CostData::totalCost
float totalCost
Definition: autotuned_index.h:394
samples
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set samples
rtflann::AutotunedIndex::gt_matches_
Matrix< size_t > gt_matches_
Definition: autotuned_index.h:770
rtflann::AutotunedIndex::bestParams_
IndexParams bestParams_
Definition: autotuned_index.h:765
FLANN_ARRAY_LEN
#define FLANN_ARRAY_LEN(a)
Definition: defines.h:72
j
std::ptrdiff_t j
rtflann::AutotunedIndex::dataset_
Matrix< ElementType > dataset_
Definition: autotuned_index.h:777
rtflann::FLANN_INDEX_AUTOTUNED
@ FLANN_INDEX_AUTOTUNED
Definition: defines.h:92
rtflann::AutotunedIndexParams::AutotunedIndexParams
AutotunedIndexParams(float target_precision=0.8, float build_weight=0.01, float memory_weight=0, float sample_fraction=0.1)
Definition: autotuned_index.h:85
rtflann::AutotunedIndex::operator=
AutotunedIndex & operator=(AutotunedIndex other)
Definition: autotuned_index.h:144
rtflann::serialization::LoadArchive
Definition: serialization.h:550
Eigen::PlainObjectBase::rows
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
rtflann::LinearIndexParams
Definition: linear_index.h:68
std::swap
void swap(GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &a, GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &b)
rtflann::print_params
void print_params(const IndexParams &params)
Definition: params.h:144
rtflann::AutotunedIndex::addPoints
void addPoints(const Matrix< ElementType > &points, float rebuild_threshold=2)
Incrementally add points to the index.
Definition: autotuned_index.h:192
rtflann::SearchParams
Definition: params.h:87
rtflann::AutotunedIndex::freeIndex
void freeIndex()
Definition: autotuned_index.h:382
rtflann::Matrix_::rows
size_t rows
Definition: matrix.h:100
d
d
rtflann::create_index_by_type
NNIndex< Distance > * create_index_by_type(const flann_algorithm_t index_type, const Matrix< typename Distance::ElementType > &dataset, const IndexParams &params, const Distance &distance)
Definition: all_indices.h:170
params
SmartProjectionParams params(gtsam::HESSIAN, gtsam::ZERO_ON_DEGENERACY)
rtflann::AutotunedIndex::CostData::searchTimeCost
float searchTimeCost
Definition: autotuned_index.h:391
rtflann::KDTreeIndex
Definition: kdtree_index.h:101
rtflann::NNIndex::distance_
Distance distance_
Definition: nn_index.h:861
rtflann::random_sample
Matrix< T > random_sample(Matrix< T > &srcMatrix, size_t size, bool remove=false)
Definition: sampling.h:66
rtflann::AutotunedIndex::size
size_t size() const
Definition: autotuned_index.h:347
rtflann::Logger::getLevel
static int getLevel()
Definition: logger.h:147
rtflann::FLANN_CHECKS_AUTOTUNED
@ FLANN_CHECKS_AUTOTUNED
Definition: defines.h:148
rtflann::AutotunedIndex::bestSearchParams_
SearchParams bestSearchParams_
Definition: autotuned_index.h:766
rtflann::AutotunedIndex::findNeighbors
void findNeighbors(ResultSet< DistanceType > &result, const ElementType *vec, const SearchParams &searchParams) const
Definition: autotuned_index.h:322
rtflann::FLANN_INDEX_KMEANS
@ FLANN_INDEX_KMEANS
Definition: defines.h:83
rtflann::AutotunedIndex::~AutotunedIndex
virtual ~AutotunedIndex()
Definition: autotuned_index.h:150
f
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
kdtree
kdtree
rtflann::AutotunedIndex::clone
BaseClass * clone() const
Definition: autotuned_index.h:155
rtflann::AutotunedIndex::serialize
void serialize(Archive &ar)
Definition: autotuned_index.h:208
rtflann::flann_algorithm_t
flann_algorithm_t
Definition: defines.h:79
index_testing.h
rtflann::AutotunedIndex::memory_weight_
float memory_weight_
Definition: autotuned_index.h:784
rtflann::AutotunedIndex::testDataset_
Matrix< ElementType > testDataset_
Definition: autotuned_index.h:769
rtflann::AutotunedIndex::buildIndexImpl
void buildIndexImpl()
Definition: autotuned_index.h:377
rtflann::NNIndex::swap
void swap(NNIndex &other)
Definition: nn_index.h:840
rtflann::AutotunedIndex::needs_kdtree_distance
bool needs_kdtree_distance
Definition: autotuned_index.h:111
rtflann::AutotunedIndex::getParameters
IndexParams getParameters() const
Definition: autotuned_index.h:328
rtflann::AutotunedIndex::ElementType
Distance::ElementType ElementType
Definition: autotuned_index.h:104
float
float
rtflann::SearchParams::checks
int checks
Definition: params.h:99
Eigen.Matrix< double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor >
rtflann::AutotunedIndex::speedup_
float speedup_
Definition: autotuned_index.h:772
rtflann::AutotunedIndex::knnSearch
int knnSearch(const Matrix< ElementType > &queries, Matrix< size_t > &indices, Matrix< DistanceType > &dists, size_t knn, const SearchParams &params) const
Perform k-nearest neighbor search.
Definition: autotuned_index.h:260
rtflann::IndexParams
std::map< std::string, any > IndexParams
Definition: params.h:77
NULL
#define NULL
rtflann::AutotunedIndex::usedMemory
int usedMemory() const
Definition: autotuned_index.h:363
rtflann::AutotunedIndex::sampledDataset_
Matrix< ElementType > sampledDataset_
Definition: autotuned_index.h:768
rtflann::AutotunedIndex::getType
flann_algorithm_t getType() const
Definition: autotuned_index.h:371
rtflann::AutotunedIndex::getSearchParameters
FLANN_DEPRECATED SearchParams getSearchParameters() const
Definition: autotuned_index.h:333
rtflann::AutotunedIndex::estimateBuildParams
IndexParams estimateBuildParams()
Definition: autotuned_index.h:588
rtflann::AutotunedIndex::evaluate_kdtree
void evaluate_kdtree(CostData &cost)
Definition: autotuned_index.h:425
t
Point2 t(10, 10)
kdtree_index.h
nn
idx_t * nn
USING_BASECLASS_SYMBOLS
#define USING_BASECLASS_SYMBOLS
Definition: nn_index.h:925
rtflann::AutotunedIndex::optimizeKDTree
void optimizeKDTree(std::vector< CostData > &costs)
Definition: autotuned_index.h:546
rtflann::AutotunedIndex::saveIndex
void saveIndex(FILE *stream)
Definition: autotuned_index.h:237
rtflann::AutotunedIndex
Definition: autotuned_index.h:101
rtflann::FLANN_INDEX_LINEAR
@ FLANN_INDEX_LINEAR
Definition: defines.h:81
rtflann
Definition: all_indices.h:49
i
int i
other
other
composite_index.h
rtflann::AutotunedIndex::estimateSearchParams
float estimateSearchParams(SearchParams &searchParams)
Definition: autotuned_index.h:675
rtflann::AutotunedIndex::buildIndex
void buildIndex()
Definition: autotuned_index.h:163
rtflann::NNIndex::index_params_
IndexParams index_params_
Definition: nn_index.h:889
rtflann::Matrix< ElementType >


rtabmap
Author(s): Mathieu Labbe
autogenerated on Sun Dec 1 2024 03:42:41