Classes | Public Types | Public Member Functions | Protected Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
rtflann::KDTreeIndex< Distance > Class Template Reference

#include <kdtree_index.h>

Inheritance diagram for rtflann::KDTreeIndex< Distance >:
Inheritance graph
[legend]

Classes

struct  Node
 

Public Types

typedef NNIndex< Distance > BaseClass
 
typedef Distance::ResultType DistanceType
 
typedef Distance::ElementType ElementType
 
typedef bool needs_kdtree_distance
 
- Public Types inherited from rtflann::NNIndex< Distance >
typedef Distance::ResultType DistanceType
 
typedef Distance::ElementType ElementType
 

Public Member Functions

void addPoints (const Matrix< ElementType > &points, float rebuild_threshold=2)
 Incrementally add points to the index. More...
 
virtual void buildIndex ()
 
virtual void buildIndex (const Matrix< ElementType > &dataset)
 
BaseClassclone () const
 
void findNeighbors (ResultSet< DistanceType > &result, const ElementType *vec, const SearchParams &searchParams) const
 
flann_algorithm_t getType () const
 
 KDTreeIndex (const IndexParams &params=KDTreeIndexParams(), Distance d=Distance())
 
 KDTreeIndex (const KDTreeIndex &other)
 
 KDTreeIndex (const Matrix< ElementType > &dataset, const IndexParams &params=KDTreeIndexParams(), Distance d=Distance())
 
void loadIndex (FILE *stream)
 
KDTreeIndexoperator= (KDTreeIndex other)
 
void saveIndex (FILE *stream)
 
template<typename Archive >
void serialize (Archive &ar)
 
int usedMemory () const
 
virtual ~KDTreeIndex ()
 
- Public Member Functions inherited from rtflann::NNIndex< Distance >
virtual void buildIndex ()
 
virtual void buildIndex (const Matrix< ElementType > &dataset)
 
IndexParams getParameters () const
 
virtual ElementTypegetPoint (size_t id)
 
virtual int knnSearch (const Matrix< ElementType > &queries, Matrix< size_t > &indices, Matrix< DistanceType > &dists, size_t knn, const SearchParams &params) const
 Perform k-nearest neighbor search. More...
 
int knnSearch (const Matrix< ElementType > &queries, std::vector< std::vector< int > > &indices, std::vector< std::vector< DistanceType > > &dists, size_t knn, const SearchParams &params) const
 
virtual int knnSearch (const Matrix< ElementType > &queries, std::vector< std::vector< size_t > > &indices, std::vector< std::vector< DistanceType > > &dists, size_t knn, const SearchParams &params) const
 Perform k-nearest neighbor search. More...
 
 NNIndex (const IndexParams &params, Distance d)
 
 NNIndex (const NNIndex &other)
 
 NNIndex (Distance d)
 
int radiusSearch (const Matrix< ElementType > &queries, Matrix< int > &indices, Matrix< DistanceType > &dists, float radius, const SearchParams &params) const
 
virtual int radiusSearch (const Matrix< ElementType > &queries, Matrix< size_t > &indices, Matrix< DistanceType > &dists, float radius, const SearchParams &params) const
 Perform radius search. More...
 
int radiusSearch (const Matrix< ElementType > &queries, std::vector< std::vector< int > > &indices, std::vector< std::vector< DistanceType > > &dists, float radius, const SearchParams &params) const
 
virtual int radiusSearch (const Matrix< ElementType > &queries, std::vector< std::vector< size_t > > &indices, std::vector< std::vector< DistanceType > > &dists, float radius, const SearchParams &params) const
 Perform radius search. More...
 
size_t removedCount () const
 
virtual void removePoint (size_t id)
 
template<typename Archive >
void serialize (Archive &ar)
 
size_t size () const
 
size_t sizeAtBuild () const
 
size_t veclen () const
 
virtual ~NNIndex ()
 
- Public Member Functions inherited from rtflann::IndexBase
virtual ~IndexBase ()
 

Protected Member Functions

void buildIndexImpl ()
 
void freeIndex ()
 
- Protected Member Functions inherited from rtflann::NNIndex< Distance >
void cleanRemovedPoints ()
 
void extendDataset (const Matrix< ElementType > &new_points)
 
size_t id_to_index (size_t id)
 
void indices_to_ids (const size_t *in, size_t *out, size_t size) const
 
void setDataset (const Matrix< ElementType > &dataset)
 
void swap (NNIndex &other)
 

Private Types

enum  { SAMPLE_MEAN = 100, RAND_DIM =5 }
 
typedef BranchStBranch
 
typedef BranchStruct< NodePtr, DistanceTypeBranchSt
 
typedef NodeNodePtr
 

Private Member Functions

void addPointToTree (NodePtr node, int ind)
 
void copyTree (NodePtr &dst, const NodePtr &src)
 
NodePtr divideTree (int *ind, int count)
 
template<bool with_removed>
void getExactNeighbors (ResultSet< DistanceType > &result, const ElementType *vec, float epsError) const
 
template<bool with_removed>
void getNeighbors (ResultSet< DistanceType > &result, const ElementType *vec, int maxCheck, float epsError) const
 
void meanSplit (int *ind, int count, int &index, int &cutfeat, DistanceType &cutval)
 
void planeSplit (int *ind, int count, int cutfeat, DistanceType cutval, int &lim1, int &lim2)
 
template<bool with_removed>
void searchLevel (ResultSet< DistanceType > &result_set, const ElementType *vec, NodePtr node, DistanceType mindist, int &checkCount, int maxCheck, float epsError, Heap< BranchSt > *heap, DynamicBitset &checked) const
 
template<bool with_removed>
void searchLevelExact (ResultSet< DistanceType > &result_set, const ElementType *vec, const NodePtr node, DistanceType mindist, const float epsError) const
 
int selectDivision (DistanceType *v)
 
void swap (KDTreeIndex &other)
 

Private Attributes

DistanceTypemean_
 
PooledAllocator pool_
 
std::vector< NodePtrtree_roots_
 
int trees_
 
DistanceTypevar_
 

Additional Inherited Members

- Protected Attributes inherited from rtflann::NNIndex< Distance >
ElementTypedata_ptr_
 
Distance distance_
 
std::vector< size_tids_
 
IndexParams index_params_
 
size_t last_id_
 
std::vector< ElementType * > points_
 
bool removed_
 
size_t removed_count_
 
DynamicBitset removed_points_
 
size_t size_
 
size_t size_at_build_
 
size_t veclen_
 

Detailed Description

template<typename Distance>
class rtflann::KDTreeIndex< Distance >

Randomized kd-tree index

Contains the k-d trees and other information for indexing a set of points for nearest-neighbor matching.

Definition at line 101 of file kdtree_index.h.

Member Typedef Documentation

◆ BaseClass

template<typename Distance >
typedef NNIndex<Distance> rtflann::KDTreeIndex< Distance >::BaseClass

Definition at line 107 of file kdtree_index.h.

◆ Branch

template<typename Distance >
typedef BranchSt* rtflann::KDTreeIndex< Distance >::Branch
private

Definition at line 177 of file kdtree_index.h.

◆ BranchSt

template<typename Distance >
typedef BranchStruct<NodePtr, DistanceType> rtflann::KDTreeIndex< Distance >::BranchSt
private

Definition at line 176 of file kdtree_index.h.

◆ DistanceType

template<typename Distance >
typedef Distance::ResultType rtflann::KDTreeIndex< Distance >::DistanceType

Definition at line 105 of file kdtree_index.h.

◆ ElementType

template<typename Distance >
typedef Distance::ElementType rtflann::KDTreeIndex< Distance >::ElementType

Definition at line 104 of file kdtree_index.h.

◆ needs_kdtree_distance

template<typename Distance >
typedef bool rtflann::KDTreeIndex< Distance >::needs_kdtree_distance

Definition at line 109 of file kdtree_index.h.

◆ NodePtr

template<typename Distance >
typedef Node* rtflann::KDTreeIndex< Distance >::NodePtr
private

Definition at line 175 of file kdtree_index.h.

Member Enumeration Documentation

◆ anonymous enum

template<typename Distance >
anonymous enum
private
Enumerator
SAMPLE_MEAN 

To improve efficiency, only SAMPLE_MEAN random values are used to compute the mean and variance at each level when building a tree. A value of 100 seems to perform as well as using all values.

RAND_DIM 

Top random dimensions to consider

When creating random trees, the dimension on which to subdivide is selected at random from among the top RAND_DIM dimensions with the highest variance. A value of 5 works well.

Definition at line 1124 of file kdtree_index.h.

Constructor & Destructor Documentation

◆ KDTreeIndex() [1/3]

template<typename Distance >
rtflann::KDTreeIndex< Distance >::KDTreeIndex ( const IndexParams params = KDTreeIndexParams(),
Distance  d = Distance() 
)
inline

KDTree constructor

Params: inputData = dataset with the input features params = parameters passed to the kdtree algorithm

Definition at line 188 of file kdtree_index.h.

◆ KDTreeIndex() [2/3]

template<typename Distance >
rtflann::KDTreeIndex< Distance >::KDTreeIndex ( const Matrix< ElementType > &  dataset,
const IndexParams params = KDTreeIndexParams(),
Distance  d = Distance() 
)
inline

KDTree constructor

Params: inputData = dataset with the input features params = parameters passed to the kdtree algorithm

Definition at line 202 of file kdtree_index.h.

◆ KDTreeIndex() [3/3]

template<typename Distance >
rtflann::KDTreeIndex< Distance >::KDTreeIndex ( const KDTreeIndex< Distance > &  other)
inline

Definition at line 210 of file kdtree_index.h.

◆ ~KDTreeIndex()

template<typename Distance >
virtual rtflann::KDTreeIndex< Distance >::~KDTreeIndex ( )
inlinevirtual

Standard destructor

Definition at line 228 of file kdtree_index.h.

Member Function Documentation

◆ addPoints()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::addPoints ( const Matrix< ElementType > &  points,
float  rebuild_threshold = 2 
)
inlinevirtual

Incrementally add points to the index.

Parameters
pointsMatrix with points to be added
rebuild_threshold

Reimplemented from rtflann::NNIndex< Distance >.

Definition at line 240 of file kdtree_index.h.

◆ addPointToTree()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::addPointToTree ( NodePtr  node,
int  ind 
)
inlineprivate

Definition at line 1067 of file kdtree_index.h.

◆ buildIndex() [1/2]

template<typename Distance >
virtual void rtflann::NNIndex< Distance >::buildIndex
inline

Builds the index

Definition at line 153 of file nn_index.h.

◆ buildIndex() [2/2]

template<typename Distance >
virtual void rtflann::NNIndex< Distance >::buildIndex
inline

Builds the index using the specified dataset

Parameters
datasetthe dataset to use

Definition at line 169 of file nn_index.h.

◆ buildIndexImpl()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::buildIndexImpl ( )
inlineprotectedvirtual

Builds the index

Implements rtflann::NNIndex< Distance >.

Definition at line 694 of file kdtree_index.h.

◆ clone()

template<typename Distance >
BaseClass* rtflann::KDTreeIndex< Distance >::clone ( ) const
inlinevirtual

Implements rtflann::NNIndex< Distance >.

Definition at line 233 of file kdtree_index.h.

◆ copyTree()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::copyTree ( NodePtr dst,
const NodePtr src 
)
inlineprivate

Definition at line 730 of file kdtree_index.h.

◆ divideTree()

template<typename Distance >
NodePtr rtflann::KDTreeIndex< Distance >::divideTree ( int ind,
int  count 
)
inlineprivate

Create a tree node that subdivides the list of vecs from vind[first] to vind[last]. The routine is called recursively on each sublist. Place a pointer to this new tree node in the location pTree.

Params: pTree = the new node to create first = index of the first vector last = index of the last vector

Definition at line 755 of file kdtree_index.h.

◆ findNeighbors()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::findNeighbors ( ResultSet< DistanceType > &  result,
const ElementType vec,
const SearchParams searchParams 
) const
inlinevirtual

Find set of nearest neighbors to vec. Their indices are stored inside the result object.

Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors maxCheck = the maximum number of restarts (in a best-bin-first manner)

Implements rtflann::NNIndex< Distance >.

Definition at line 323 of file kdtree_index.h.

◆ freeIndex()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::freeIndex ( )
inlineprotectedvirtual

Implements rtflann::NNIndex< Distance >.

Definition at line 718 of file kdtree_index.h.

◆ getExactNeighbors()

template<typename Distance >
template<bool with_removed>
void rtflann::KDTreeIndex< Distance >::getExactNeighbors ( ResultSet< DistanceType > &  result,
const ElementType vec,
float  epsError 
) const
inlineprivate

Performs an exact nearest neighbor search. The exact search performs a full traversal of the tree.

Definition at line 901 of file kdtree_index.h.

◆ getNeighbors()

template<typename Distance >
template<bool with_removed>
void rtflann::KDTreeIndex< Distance >::getNeighbors ( ResultSet< DistanceType > &  result,
const ElementType vec,
int  maxCheck,
float  epsError 
) const
inlineprivate

Performs the approximate nearest-neighbor search. The search is approximate because the tree traversal is abandoned after a given number of descends in the tree.

Definition at line 919 of file kdtree_index.h.

◆ getType()

template<typename Distance >
flann_algorithm_t rtflann::KDTreeIndex< Distance >::getType ( ) const
inlinevirtual

Implements rtflann::IndexBase.

Definition at line 259 of file kdtree_index.h.

◆ loadIndex()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::loadIndex ( FILE *  stream)
inlinevirtual

Implements rtflann::IndexBase.

Definition at line 298 of file kdtree_index.h.

◆ meanSplit()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::meanSplit ( int ind,
int  count,
int index,
int cutfeat,
DistanceType cutval 
)
inlineprivate

Choose which feature to use in order to subdivide this set of vectors. Make a random choice among those with the highest variance, and use its variance as the threshold value.

Definition at line 786 of file kdtree_index.h.

◆ operator=()

template<typename Distance >
KDTreeIndex& rtflann::KDTreeIndex< Distance >::operator= ( KDTreeIndex< Distance >  other)
inline

Definition at line 219 of file kdtree_index.h.

◆ planeSplit()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::planeSplit ( int ind,
int  count,
int  cutfeat,
DistanceType  cutval,
int lim1,
int lim2 
)
inlineprivate

Subdivide the list of points by a plane perpendicular on axe corresponding to the 'cutfeat' dimension at 'cutval' position.

On return: dataset[ind[0..lim1-1]][cutfeat]<cutval dataset[ind[lim1..lim2-1]][cutfeat]==cutval dataset[ind[lim2..count]][cutfeat]>cutval

Definition at line 874 of file kdtree_index.h.

◆ saveIndex()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::saveIndex ( FILE *  stream)
inlinevirtual

Implements rtflann::IndexBase.

Definition at line 291 of file kdtree_index.h.

◆ searchLevel()

template<typename Distance >
template<bool with_removed>
void rtflann::KDTreeIndex< Distance >::searchLevel ( ResultSet< DistanceType > &  result_set,
const ElementType vec,
NodePtr  node,
DistanceType  mindist,
int checkCount,
int  maxCheck,
float  epsError,
Heap< BranchSt > *  heap,
DynamicBitset checked 
) const
inlineprivate

Search starting from a given node of the tree. Based on any mismatches at higher levels, all exemplars below this level must have a distance of at least "mindistsq".

Definition at line 977 of file kdtree_index.h.

◆ searchLevelExact()

template<typename Distance >
template<bool with_removed>
void rtflann::KDTreeIndex< Distance >::searchLevelExact ( ResultSet< DistanceType > &  result_set,
const ElementType vec,
const NodePtr  node,
DistanceType  mindist,
const float  epsError 
) const
inlineprivate

Performs an exact search in the tree starting from a node.

Definition at line 1029 of file kdtree_index.h.

◆ selectDivision()

template<typename Distance >
int rtflann::KDTreeIndex< Distance >::selectDivision ( DistanceType v)
inlineprivate

Select the top RAND_DIM largest values from v and return the index of one of these selected at random.

Definition at line 836 of file kdtree_index.h.

◆ serialize()

template<typename Distance >
template<typename Archive >
void rtflann::KDTreeIndex< Distance >::serialize ( Archive &  ar)
inline

Definition at line 266 of file kdtree_index.h.

◆ swap()

template<typename Distance >
void rtflann::KDTreeIndex< Distance >::swap ( KDTreeIndex< Distance > &  other)
inlineprivate

Definition at line 1114 of file kdtree_index.h.

◆ usedMemory()

template<typename Distance >
int rtflann::KDTreeIndex< Distance >::usedMemory ( ) const
inlinevirtual

Computes the inde memory usage Returns: memory used by the index

Implements rtflann::IndexBase.

Definition at line 309 of file kdtree_index.h.

Member Data Documentation

◆ mean_

template<typename Distance >
DistanceType* rtflann::KDTreeIndex< Distance >::mean_
private

Definition at line 1148 of file kdtree_index.h.

◆ pool_

template<typename Distance >
PooledAllocator rtflann::KDTreeIndex< Distance >::pool_
private

Pooled memory allocator.

Using a pooled memory allocator is more efficient than allocating memory directly when there is a large number small of memory allocations.

Definition at line 1163 of file kdtree_index.h.

◆ tree_roots_

template<typename Distance >
std::vector<NodePtr> rtflann::KDTreeIndex< Distance >::tree_roots_
private

Array of k-d trees used to find neighbours.

Definition at line 1154 of file kdtree_index.h.

◆ trees_

template<typename Distance >
int rtflann::KDTreeIndex< Distance >::trees_
private

Number of randomized trees that are used

Definition at line 1146 of file kdtree_index.h.

◆ var_

template<typename Distance >
DistanceType* rtflann::KDTreeIndex< Distance >::var_
private

Definition at line 1149 of file kdtree_index.h.


The documentation for this class was generated from the following file:


rtabmap
Author(s): Mathieu Labbe
autogenerated on Sun Dec 1 2024 03:43:05