Public Member Functions | Public Attributes | Private Attributes | List of all members
ov_core::CpiV2 Class Reference

Model 2 of continuous preintegration. More...

#include <CpiV2.h>

Inheritance diagram for ov_core::CpiV2:
Inheritance graph
[legend]

Public Member Functions

 CpiV2 (double sigma_w, double sigma_wb, double sigma_a, double sigma_ab, bool imu_avg_=false)
 Default constructor for our Model 2 preintegration (piecewise constant local acceleration assumption) More...
 
void feed_IMU (double t_0, double t_1, Eigen::Matrix< double, 3, 1 > w_m_0, Eigen::Matrix< double, 3, 1 > a_m_0, Eigen::Matrix< double, 3, 1 > w_m_1=Eigen::Matrix< double, 3, 1 >::Zero(), Eigen::Matrix< double, 3, 1 > a_m_1=Eigen::Matrix< double, 3, 1 >::Zero())
 Our precompound function for Model 2. More...
 
virtual ~CpiV2 ()
 
- Public Member Functions inherited from ov_core::CpiBase
 CpiBase (double sigma_w, double sigma_wb, double sigma_a, double sigma_ab, bool imu_avg_=false)
 Default constructor. More...
 
void setLinearizationPoints (Eigen::Matrix< double, 3, 1 > b_w_lin_, Eigen::Matrix< double, 3, 1 > b_a_lin_, Eigen::Matrix< double, 4, 1 > q_k_lin_=Eigen::Matrix< double, 4, 1 >::Zero(), Eigen::Matrix< double, 3, 1 > grav_=Eigen::Matrix< double, 3, 1 >::Zero())
 Set linearization points of the integration. More...
 
virtual ~CpiBase ()
 

Public Attributes

Eigen::Matrix< double, 3, 3 > O_a = Eigen::Matrix<double, 3, 3>::Zero()
 
Eigen::Matrix< double, 3, 3 > O_b = Eigen::Matrix<double, 3, 3>::Zero()
 
bool state_transition_jacobians = true
 If we want to use analytical jacobians or not. In the paper we just numerically integrated the jacobians If set to false, we use a closed form version similar to model 1. More...
 
- Public Attributes inherited from ov_core::CpiBase
Eigen::Matrix< double, 3, 1 > alpha_tau = Eigen::Matrix<double, 3, 1>::Zero()
 alpha measurement mean More...
 
Eigen::Matrix< double, 3, 1 > b_a_lin
 b_a linearization point (accelerometer) More...
 
Eigen::Matrix< double, 3, 1 > b_w_lin
 b_w linearization point (gyroscope) More...
 
Eigen::Matrix< double, 3, 1 > beta_tau = Eigen::Matrix<double, 3, 1>::Zero()
 beta measurement mean More...
 
double DT = 0
 measurement integration time More...
 
Eigen::Matrix< double, 3, 1 > e_1
 
Eigen::Matrix< double, 3, 3 > e_1x
 
Eigen::Matrix< double, 3, 1 > e_2
 
Eigen::Matrix< double, 3, 3 > e_2x
 
Eigen::Matrix< double, 3, 1 > e_3
 
Eigen::Matrix< double, 3, 3 > e_3x
 
Eigen::Matrix< double, 3, 3 > eye3 = Eigen::Matrix<double, 3, 3>::Identity()
 
Eigen::Matrix< double, 3, 1 > grav = Eigen::Matrix<double, 3, 1>::Zero()
 Global gravity. More...
 
Eigen::Matrix< double, 3, 3 > H_a = Eigen::Matrix<double, 3, 3>::Zero()
 alpha Jacobian wrt b_a More...
 
Eigen::Matrix< double, 3, 3 > H_b = Eigen::Matrix<double, 3, 3>::Zero()
 beta Jacobian wrt b_a More...
 
bool imu_avg = false
 
Eigen::Matrix< double, 3, 3 > J_a = Eigen::Matrix<double, 3, 3>::Zero()
 alpha Jacobian wrt b_w More...
 
Eigen::Matrix< double, 3, 3 > J_b = Eigen::Matrix<double, 3, 3>::Zero()
 beta Jacobian wrt b_w More...
 
Eigen::Matrix< double, 3, 3 > J_q = Eigen::Matrix<double, 3, 3>::Zero()
 orientation Jacobian wrt b_w More...
 
Eigen::Matrix< double, 15, 15 > P_meas = Eigen::Matrix<double, 15, 15>::Zero()
 Our final measurement covariance. More...
 
Eigen::Matrix< double, 12, 12 > Q_c = Eigen::Matrix<double, 12, 12>::Zero()
 Our continous-time measurement noise matrix (computed from contructor noise values) More...
 
Eigen::Matrix< double, 4, 1 > q_k2tau
 orientation measurement mean More...
 
Eigen::Matrix< double, 4, 1 > q_k_lin
 q_k linearization point (only model 2 uses) More...
 
Eigen::Matrix< double, 3, 3 > R_k2tau = Eigen::Matrix<double, 3, 3>::Identity()
 orientation measurement mean More...
 

Private Attributes

Eigen::Matrix< double, 21, 21 > Discrete_J_b = Eigen::Matrix<double, 21, 21>::Identity()
 
Eigen::Matrix< double, 21, 21 > P_big = Eigen::Matrix<double, 21, 21>::Zero()
 

Detailed Description

Model 2 of continuous preintegration.

This model is the "piecewise constant local acceleration assumption." Please see the following publication for details on the theory [Eckenhoff2019IJRR] :

Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation Authors: Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang http://udel.edu/~ghuang/papers/tr_cpi.pdf

The steps to use this preintegration class are as follows:

  1. call setLinearizationPoints() to set the bias/orientation linearization point
  2. call feed_IMU() will all IMU measurements you want to precompound over
  3. access public varibles, to get means, Jacobians, and measurement covariance

Definition at line 49 of file CpiV2.h.

Constructor & Destructor Documentation

◆ CpiV2()

ov_core::CpiV2::CpiV2 ( double  sigma_w,
double  sigma_wb,
double  sigma_a,
double  sigma_ab,
bool  imu_avg_ = false 
)
inline

Default constructor for our Model 2 preintegration (piecewise constant local acceleration assumption)

Parameters
sigma_wgyroscope white noise density (rad/s/sqrt(hz))
sigma_wbgyroscope random walk (rad/s^2/sqrt(hz))
sigma_aaccelerometer white noise density (m/s^2/sqrt(hz))
sigma_abaccelerometer random walk (m/s^3/sqrt(hz))
imu_avg_if we want to average the imu measurements (IJRR paper did not do this)

Definition at line 79 of file CpiV2.h.

◆ ~CpiV2()

virtual ov_core::CpiV2::~CpiV2 ( )
inlinevirtual

Definition at line 82 of file CpiV2.h.

Member Function Documentation

◆ feed_IMU()

void CpiV2::feed_IMU ( double  t_0,
double  t_1,
Eigen::Matrix< double, 3, 1 >  w_m_0,
Eigen::Matrix< double, 3, 1 >  a_m_0,
Eigen::Matrix< double, 3, 1 >  w_m_1 = Eigen::Matrix<double, 3, 1>::Zero(),
Eigen::Matrix< double, 3, 1 >  a_m_1 = Eigen::Matrix<double, 3, 1>::Zero() 
)
virtual

Our precompound function for Model 2.

Parameters
[in]t_0first IMU timestamp
[in]t_1second IMU timestamp
[in]w_m_0first imu gyroscope measurement
[in]a_m_0first imu acceleration measurement
[in]w_m_1second imu gyroscope measurement
[in]a_m_1second imu acceleration measurement

We will first analytically integrate our meansurement. We can numerically or analytically integrate our bias jacobians. Then we perform numerical integration for our measurement covariance.

Implements ov_core::CpiBase.

Definition at line 33 of file CpiV2.cpp.

Member Data Documentation

◆ Discrete_J_b

Eigen::Matrix<double, 21, 21> ov_core::CpiV2::Discrete_J_b = Eigen::Matrix<double, 21, 21>::Identity()
private

Definition at line 56 of file CpiV2.h.

◆ O_a

Eigen::Matrix<double, 3, 3> ov_core::CpiV2::O_a = Eigen::Matrix<double, 3, 3>::Zero()

Definition at line 68 of file CpiV2.h.

◆ O_b

Eigen::Matrix<double, 3, 3> ov_core::CpiV2::O_b = Eigen::Matrix<double, 3, 3>::Zero()

Definition at line 69 of file CpiV2.h.

◆ P_big

Eigen::Matrix<double, 21, 21> ov_core::CpiV2::P_big = Eigen::Matrix<double, 21, 21>::Zero()
private

Definition at line 53 of file CpiV2.h.

◆ state_transition_jacobians

bool ov_core::CpiV2::state_transition_jacobians = true

If we want to use analytical jacobians or not. In the paper we just numerically integrated the jacobians If set to false, we use a closed form version similar to model 1.

Definition at line 65 of file CpiV2.h.


The documentation for this class was generated from the following files:


ov_core
Author(s): Patrick Geneva , Kevin Eckenhoff , Guoquan Huang
autogenerated on Mon Jan 22 2024 03:08:17