Go to the documentation of this file.
22 #ifndef OV_CORE_INITIALIZEROPTIONS_H
23 #define OV_CORE_INITIALIZEROPTIONS_H
72 void print(
const std::shared_ptr<ov_core::YamlParser> &parser =
nullptr) {
73 if (parser !=
nullptr) {
76 parser->parse_config(
"fi_max_runs",
max_runs,
false);
77 parser->parse_config(
"fi_init_lamda",
init_lamda,
false);
78 parser->parse_config(
"fi_max_lamda",
max_lamda,
false);
79 parser->parse_config(
"fi_min_dx",
min_dx,
false);
80 parser->parse_config(
"fi_min_dcost",
min_dcost,
false);
81 parser->parse_config(
"fi_lam_mult",
lam_mult,
false);
82 parser->parse_config(
"fi_min_dist",
min_dist,
false);
83 parser->parse_config(
"fi_max_dist",
max_dist,
false);
84 parser->parse_config(
"fi_max_baseline",
max_baseline,
false);
104 #endif // OV_CORE_INITIALIZEROPTIONS_H
bool triangulate_1d
If we should perform 1d triangulation instead of 3d.
double min_dist
Minimum distance to accept triangulated features.
#define PRINT_DEBUG(x...)
double max_baseline
Max baseline ratio to accept triangulated features.
Struct which stores all our feature initializer options.
double max_cond_number
Max condition number of linear triangulation matrix accept triangulated features.
bool refine_features
If we should perform Levenberg-Marquardt refinment.
double lam_mult
Multiplier to increase/decrease lambda.
double min_dx
Cutoff for dx increment to consider as converged.
double init_lamda
Init lambda for Levenberg-Marquardt optimization.
int max_runs
Max runs for Levenberg-Marquardt.
double max_dist
Minimum distance to accept triangulated features.
double min_dcost
Cutoff for cost decrement to consider as converged.
double max_lamda
Max lambda for Levenberg-Marquardt optimization.
void print(const std::shared_ptr< ov_core::YamlParser > &parser=nullptr)
Nice print function of what parameters we have loaded.
Core algorithms for OpenVINS.
ov_core
Author(s): Patrick Geneva
, Kevin Eckenhoff , Guoquan Huang
autogenerated on Mon Dec 16 2024 03:06:46