Go to the documentation of this file.
32 using namespace gtsam;
41 double total_error = 0.;
61 params.augmentationFactor = 0.0;
63 auto subgraph = builder(
Ab);
113 auto Rc1 = *Ab1.eliminateSequential();
static int runAllTests(TestResult &result)
static double error(const GaussianFactorGraph &fg, const VectorValues &x)
Linear Factor Graph where all factors are Gaussians.
Subgraph Solver from IROS 2010.
Array< double, 1, 3 > e(1./3., 0.5, 2.)
#define EXPECT_LONGS_EQUAL(expected, actual)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
double error(const DiscreteValues &values) const override
Calculate error for DiscreteValues x, is -log(probability).
Verbosity verbosity() const
Variable ordering for the elimination algorithm.
Chordal Bayes Net, the result of eliminating a factor graph.
std::pair< GaussianFactorGraph, GaussianFactorGraph > splitOffPlanarTree(size_t N, const GaussianFactorGraph &original)
static const SmartProjectionParams params
BiCGSTAB< SparseMatrix< double > > solver
DecisionTreeFactor factor(D &C &B &A, "0.0 0.0 0.0 0.60658897 0.61241912 0.61241969 0.61247685 0.61247742 0.0 " "0.0 0.0 0.99995287 1.0 1.0 1.0 1.0")
Some functions to compute numerical derivatives.
std::pair< GaussianFactorGraph, GaussianFactorGraph > splitFactorGraph(const GaussianFactorGraph &factorGraph, const Subgraph &subgraph)
#define DOUBLES_EQUAL(expected, actual, threshold)
std::shared_ptr< This > shared_ptr
shared_ptr to this class
Iterative methods, implementation.
Ordering planarOrdering(size_t N)
std::pair< GaussianFactorGraph, VectorValues > planarGraph(size_t N)
size_t maxIterations
maximum number of cg iterations
TEST(SubgraphSolver, Parameters)
Create small example with two poses and one landmark.
#define LONGS_EQUAL(expected, actual)
static SubgraphSolverParameters kParameters
gtsam
Author(s):
autogenerated on Thu Dec 19 2024 04:07:34