testGeneralSFMFactor_Cal3Bundler.cpp
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------------
2 
3  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
4  * Atlanta, Georgia 30332-0415
5  * All Rights Reserved
6  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
7 
8  * See LICENSE for the license information
9 
10  * -------------------------------------------------------------------------- */
11 
20 #include <gtsam/sam/RangeFactor.h>
23 #include <gtsam/inference/Symbol.h>
26 #include <gtsam/geometry/Point3.h>
29 #include <gtsam/base/Testable.h>
30 
31 #include <memory>
33 
34 #include <iostream>
35 #include <vector>
36 
37 using namespace std;
38 using namespace gtsam;
39 
40 // Convenience for named keys
43 
48 
49 /* ************************************************************************* */
50 class Graph: public NonlinearFactorGraph {
51 public:
52  void addMeasurement(const int& i, const int& j, const Point2& z,
53  const SharedNoiseModel& model) {
54  emplace_shared<Projection>(z, model, X(i), L(j));
55  }
56 
57  void addCameraConstraint(int j, const GeneralCamera& p) {
58  std::shared_ptr<CameraConstraint> factor(new CameraConstraint(X(j), p));
59  push_back(factor);
60  }
61 
62  void addPoint3Constraint(int j, const Point3& p) {
63  std::shared_ptr<Point3Constraint> factor(new Point3Constraint(L(j), p));
64  push_back(factor);
65  }
66 
67 };
68 
69 static double getGaussian() {
70  double S, V1, V2;
71  // Use Box-Muller method to create gauss noise from uniform noise
72  do {
73  double U1 = rand() / (double) (RAND_MAX);
74  double U2 = rand() / (double) (RAND_MAX);
75  V1 = 2 * U1 - 1; /* V1=[-1,1] */
76  V2 = 2 * U2 - 1; /* V2=[-1,1] */
77  S = V1 * V1 + V2 * V2;
78  } while (S >= 1);
79  return sqrt(-2.f * (double) log(S) / S) * V1;
80 }
81 
82 static const SharedNoiseModel sigma1(noiseModel::Unit::Create(2));
83 
84 /* ************************************************************************* */
85 TEST( GeneralSFMFactor_Cal3Bundler, equals ) {
86  // Create two identical factors and make sure they're equal
87  Point2 z(323., 240.);
88  const Symbol cameraFrameNumber('x', 1), landmarkNumber('l', 1);
89  const SharedNoiseModel sigma(noiseModel::Unit::Create(1));
90  std::shared_ptr<Projection> factor1(
91  new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
92 
93  std::shared_ptr<Projection> factor2(
94  new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
95 
97 }
98 
99 /* ************************************************************************* */
100 TEST( GeneralSFMFactor_Cal3Bundler, error ) {
101  Point2 z(3., 0.);
102  const SharedNoiseModel sigma(noiseModel::Unit::Create(1));
103  std::shared_ptr<Projection> factor(new Projection(z, sigma, X(1), L(1)));
104  // For the following configuration, the factor predicts 320,240
105  Values values;
106  Rot3 R;
107  Point3 t1(0, 0, -6);
108  Pose3 x1(R, t1);
110  Point3 l1(0,0,0);
111  values.insert(L(1), l1);
112  EXPECT(assert_equal(Vector2(-3., 0.), factor->unwhitenedError(values)));
113 }
114 
115 static const double baseline = 5.;
116 
117 /* ************************************************************************* */
118 static vector<Point3> genPoint3() {
119  const double z = 5;
120  vector<Point3> landmarks;
121  landmarks.push_back(Point3(-1., -1., z));
122  landmarks.push_back(Point3(-1., 1., z));
123  landmarks.push_back(Point3(1., 1., z));
124  landmarks.push_back(Point3(1., -1., z));
125  landmarks.push_back(Point3(-1.5, -1.5, 1.5 * z));
126  landmarks.push_back(Point3(-1.5, 1.5, 1.5 * z));
127  landmarks.push_back(Point3(1.5, 1.5, 1.5 * z));
128  landmarks.push_back(Point3(1.5, -1.5, 1.5 * z));
129  landmarks.push_back(Point3(-2., -2., 2 * z));
130  landmarks.push_back(Point3(-2., 2., 2 * z));
131  landmarks.push_back(Point3(2., 2., 2 * z));
132  landmarks.push_back(Point3(2., -2., 2 * z));
133  return landmarks;
134 }
135 
136 static vector<GeneralCamera> genCameraDefaultCalibration() {
137  vector<GeneralCamera> cameras;
138  cameras.push_back(
139  GeneralCamera(Pose3(Rot3(), Point3(-baseline / 2., 0., 0.))));
140  cameras.push_back(
141  GeneralCamera(Pose3(Rot3(), Point3(baseline / 2., 0., 0.))));
142  return cameras;
143 }
144 
145 static vector<GeneralCamera> genCameraVariableCalibration() {
146  const Cal3Bundler K(500, 1e-3, 1e-3);
147  vector<GeneralCamera> cameras;
148  cameras.push_back(
149  GeneralCamera(Pose3(Rot3(), Point3(-baseline / 2., 0., 0.)), K));
150  cameras.push_back(
151  GeneralCamera(Pose3(Rot3(), Point3(baseline / 2., 0., 0.)), K));
152  return cameras;
153 }
154 
155 static std::shared_ptr<Ordering> getOrdering(
156  const std::vector<GeneralCamera>& cameras,
157  const std::vector<Point3>& landmarks) {
158  std::shared_ptr<Ordering> ordering(new Ordering);
159  for (size_t i = 0; i < landmarks.size(); ++i)
160  ordering->push_back(L(i));
161  for (size_t i = 0; i < cameras.size(); ++i)
162  ordering->push_back(X(i));
163  return ordering;
164 }
165 
166 /* ************************************************************************* */
167 TEST( GeneralSFMFactor_Cal3Bundler, optimize_defaultK ) {
168 
169  vector<Point3> landmarks = genPoint3();
170  vector<GeneralCamera> cameras = genCameraDefaultCalibration();
171 
172  // add measurement with noise
173  Graph graph;
174  for (size_t j = 0; j < cameras.size(); ++j) {
175  for (size_t i = 0; i < landmarks.size(); ++i) {
176  Point2 pt = cameras[j].project(landmarks[i]);
177  graph.addMeasurement(j, i, pt, sigma1);
178  }
179  }
180 
181  const size_t nMeasurements = cameras.size() * landmarks.size();
182 
183  // add initial
184  const double noise = baseline * 0.1;
185  Values values;
186  for (size_t i = 0; i < cameras.size(); ++i)
187  values.insert(X(i), cameras[i]);
188 
189  for (size_t i = 0; i < landmarks.size(); ++i) {
190  Point3 pt(landmarks[i].x() + noise * getGaussian(),
191  landmarks[i].y() + noise * getGaussian(),
192  landmarks[i].z() + noise * getGaussian());
193  values.insert(L(i), pt);
194  }
195 
196  graph.addCameraConstraint(0, cameras[0]);
197 
198  // Create an ordering of the variables
199  Ordering ordering = *getOrdering(cameras, landmarks);
201  Values final = optimizer.optimize();
202  EXPECT(optimizer.error() < 0.5 * 1e-5 * nMeasurements);
203 }
204 
205 /* ************************************************************************* */
206 TEST( GeneralSFMFactor_Cal3Bundler, optimize_varK_SingleMeasurementError ) {
207  vector<Point3> landmarks = genPoint3();
208  vector<GeneralCamera> cameras = genCameraVariableCalibration();
209  // add measurement with noise
210  Graph graph;
211  for (size_t j = 0; j < cameras.size(); ++j) {
212  for (size_t i = 0; i < landmarks.size(); ++i) {
213  Point2 pt = cameras[j].project(landmarks[i]);
214  graph.addMeasurement(j, i, pt, sigma1);
215  }
216  }
217 
218  const size_t nMeasurements = cameras.size() * landmarks.size();
219 
220  // add initial
221  const double noise = baseline * 0.1;
222  Values values;
223  for (size_t i = 0; i < cameras.size(); ++i)
224  values.insert(X(i), cameras[i]);
225 
226  // add noise only to the first landmark
227  for (size_t i = 0; i < landmarks.size(); ++i) {
228  if (i == 0) {
229  Point3 pt(landmarks[i].x() + noise * getGaussian(),
230  landmarks[i].y() + noise * getGaussian(),
231  landmarks[i].z() + noise * getGaussian());
232  values.insert(L(i), pt);
233  } else {
234  values.insert(L(i), landmarks[i]);
235  }
236  }
237 
238  graph.addCameraConstraint(0, cameras[0]);
239  const double reproj_error = 1e-5;
240 
241  Ordering ordering = *getOrdering(cameras, landmarks);
243  Values final = optimizer.optimize();
244  EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
245 }
246 
247 /* ************************************************************************* */
248 TEST( GeneralSFMFactor_Cal3Bundler, optimize_varK_FixCameras ) {
249 
250  vector<Point3> landmarks = genPoint3();
251  vector<GeneralCamera> cameras = genCameraVariableCalibration();
252 
253  // add measurement with noise
254  const double noise = baseline * 0.1;
255  Graph graph;
256  for (size_t j = 0; j < cameras.size(); ++j) {
257  for (size_t i = 0; i < landmarks.size(); ++i) {
258  Point2 pt = cameras[j].project(landmarks[i]);
259  graph.addMeasurement(j, i, pt, sigma1);
260  }
261  }
262 
263  const size_t nMeasurements = landmarks.size() * cameras.size();
264 
265  Values values;
266  for (size_t i = 0; i < cameras.size(); ++i)
267  values.insert(X(i), cameras[i]);
268 
269  for (size_t i = 0; i < landmarks.size(); ++i) {
270  Point3 pt(landmarks[i].x() + noise * getGaussian(),
271  landmarks[i].y() + noise * getGaussian(),
272  landmarks[i].z() + noise * getGaussian());
273  //Point3 pt(landmarks[i].x(), landmarks[i].y(), landmarks[i].z());
274  values.insert(L(i), pt);
275  }
276 
277  for (size_t i = 0; i < cameras.size(); ++i)
278  graph.addCameraConstraint(i, cameras[i]);
279 
280  const double reproj_error = 1e-5;
281 
282  Ordering ordering = *getOrdering(cameras, landmarks);
284  Values final = optimizer.optimize();
285  EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
286 }
287 
288 /* ************************************************************************* */
289 TEST( GeneralSFMFactor_Cal3Bundler, optimize_varK_FixLandmarks ) {
290 
291  vector<Point3> landmarks = genPoint3();
292  vector<GeneralCamera> cameras = genCameraVariableCalibration();
293 
294  // add measurement with noise
295  Graph graph;
296  for (size_t j = 0; j < cameras.size(); ++j) {
297  for (size_t i = 0; i < landmarks.size(); ++i) {
298  Point2 pt = cameras[j].project(landmarks[i]);
299  graph.addMeasurement(j, i, pt, sigma1);
300  }
301  }
302 
303  const size_t nMeasurements = landmarks.size() * cameras.size();
304 
305  Values values;
306  for (size_t i = 0; i < cameras.size(); ++i) {
307  const double rot_noise = 1e-5, trans_noise = 1e-3, focal_noise = 1,
308  distort_noise = 1e-3;
309  if (i == 0) {
310  values.insert(X(i), cameras[i]);
311  } else {
312 
313  Vector delta = (Vector(9) << rot_noise, rot_noise, rot_noise, // rotation
314  trans_noise, trans_noise, trans_noise, // translation
315  focal_noise, distort_noise, distort_noise // f, k1, k2
316  ).finished();
317  values.insert(X(i), cameras[i].retract(delta));
318  }
319  }
320 
321  for (size_t i = 0; i < landmarks.size(); ++i) {
322  values.insert(L(i), landmarks[i]);
323  }
324 
325  // fix X0 and all landmarks, allow only the cameras[1] to move
326  graph.addCameraConstraint(0, cameras[0]);
327  for (size_t i = 0; i < landmarks.size(); ++i)
328  graph.addPoint3Constraint(i, landmarks[i]);
329 
330  const double reproj_error = 1e-5;
331 
332  Ordering ordering = *getOrdering(cameras, landmarks);
334  Values final = optimizer.optimize();
335  EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
336 }
337 
338 /* ************************************************************************* */
339 TEST( GeneralSFMFactor_Cal3Bundler, optimize_varK_BA ) {
340  vector<Point3> landmarks = genPoint3();
341  vector<GeneralCamera> cameras = genCameraVariableCalibration();
342 
343  // add measurement with noise
344  Graph graph;
345  for (size_t j = 0; j < cameras.size(); ++j) {
346  for (size_t i = 0; i < landmarks.size(); ++i) {
347  Point2 pt = cameras[j].project(landmarks[i]);
348  graph.addMeasurement(j, i, pt, sigma1);
349  }
350  }
351 
352  const size_t nMeasurements = cameras.size() * landmarks.size();
353 
354  // add initial
355  const double noise = baseline * 0.1;
356  Values values;
357  for (size_t i = 0; i < cameras.size(); ++i)
358  values.insert(X(i), cameras[i]);
359 
360  // add noise only to the first landmark
361  for (size_t i = 0; i < landmarks.size(); ++i) {
362  Point3 pt(landmarks[i].x() + noise * getGaussian(),
363  landmarks[i].y() + noise * getGaussian(),
364  landmarks[i].z() + noise * getGaussian());
365  values.insert(L(i), pt);
366  }
367 
368  // Constrain position of system with the first camera constrained to the origin
369  graph.addCameraConstraint(0, cameras[0]);
370 
371  // Constrain the scale of the problem with a soft range factor of 1m between the cameras
374  noiseModel::Isotropic::Sigma(1, 10.));
375 
376  const double reproj_error = 1e-5;
377 
378  Ordering ordering = *getOrdering(cameras, landmarks);
380  Values final = optimizer.optimize();
381  EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
382 }
383 
384 /* ************************************************************************* */
385 int main() {
386  TestResult tr;
387  return TestRegistry::runAllTests(tr);
388 }
389 /* ************************************************************************* */
TestRegistry::runAllTests
static int runAllTests(TestResult &result)
Definition: TestRegistry.cpp:27
gtsam::NonlinearOptimizer::optimize
virtual const Values & optimize()
Definition: NonlinearOptimizer.h:98
getGaussian
static double getGaussian()
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:69
gtsam::RangeFactor
Definition: sam/RangeFactor.h:35
fixture::cameras
std::array< PinholeCamera< Cal3_S2 >, 3 > cameras
Definition: testTransferFactor.cpp:59
simple_graph::factor2
auto factor2
Definition: testJacobianFactor.cpp:203
main
int main()
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:385
e
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Testable.h
Concept check for values that can be used in unit tests.
EXPECT
#define EXPECT(condition)
Definition: Test.h:150
gtsam::Vector2
Eigen::Vector2d Vector2
Definition: Vector.h:43
genPoint3
static vector< Point3 > genPoint3()
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:118
TestHarness.h
LevenbergMarquardtOptimizer.h
A nonlinear optimizer that uses the Levenberg-Marquardt trust-region scheme.
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition: gnuplot_common_settings.hh:12
RangeFactor.h
Serializable factor induced by a range measurement.
pt
static const Point3 pt(1.0, 2.0, 3.0)
different_sigmas::values
HybridValues values
Definition: testHybridBayesNet.cpp:245
log
const EIGEN_DEVICE_FUNC LogReturnType log() const
Definition: ArrayCwiseUnaryOps.h:128
GeneralSFMFactor.h
a general SFM factor with an unknown calibration
X
#define X
Definition: icosphere.cpp:20
Point3.h
3D Point
gtsam::Vector
Eigen::VectorXd Vector
Definition: Vector.h:39
gtsam::NonlinearEquality
Definition: NonlinearEquality.h:43
sampling::sigma
static const double sigma
Definition: testGaussianBayesNet.cpp:170
gtsam::NonlinearOptimizer::error
double error() const
return error in current optimizer state
Definition: NonlinearOptimizer.cpp:49
Graph::addPoint3Constraint
void addPoint3Constraint(int j, const Point3 &p)
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:62
pruning_fixture::factor
DecisionTreeFactor factor(D &C &B &A, "0.0 0.0 0.0 0.60658897 0.61241912 0.61241969 0.61247685 0.61247742 0.0 " "0.0 0.0 0.99995287 1.0 1.0 1.0 1.0")
CameraConstraint
NonlinearEquality< GeneralCamera > CameraConstraint
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:46
TEST
TEST(GeneralSFMFactor_Cal3Bundler, equals)
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:85
genCameraVariableCalibration
static vector< GeneralCamera > genCameraVariableCalibration()
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:145
genCameraDefaultCalibration
static vector< GeneralCamera > genCameraDefaultCalibration()
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:136
sigma1
static const SharedNoiseModel sigma1(noiseModel::Unit::Create(2))
gtsam.examples.PlanarManipulatorExample.delta
def delta(g0, g1)
Definition: PlanarManipulatorExample.py:45
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
x1
Pose3 x1
Definition: testPose3.cpp:663
gtsam::Rot3
Rot3 is a 3D rotation represented as a rotation matrix if the preprocessor symbol GTSAM_USE_QUATERNIO...
Definition: Rot3.h:58
gtsam::Pose3
Definition: Pose3.h:37
gtsam::PinholeCamera< Cal3Bundler >
gtsam::NonlinearFactorGraph
Definition: NonlinearFactorGraph.h:55
PinholeCamera.h
Base class for all pinhole cameras.
gtsam::Cal3Bundler
Calibration used by Bundler.
Definition: Cal3Bundler.h:32
gtsam::LevenbergMarquardtOptimizer
Definition: LevenbergMarquardtOptimizer.h:35
L
MatrixXd L
Definition: LLT_example.cpp:6
Symbol.h
pybind_wrapper_test_script.z
z
Definition: pybind_wrapper_test_script.py:61
gtsam::HybridValues::insert
void insert(Key j, const Vector &value)
Definition: HybridValues.cpp:85
VectorValues.h
Factor Graph Values.
gtsam::Point2
Vector2 Point2
Definition: Point2.h:32
gtsam::SharedNoiseModel
noiseModel::Base::shared_ptr SharedNoiseModel
Definition: NoiseModel.h:762
NonlinearEquality.h
Projection
GeneralSFMFactor< GeneralCamera, Point3 > Projection
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:45
model
noiseModel::Diagonal::shared_ptr model
Definition: doc/Code/Pose2SLAMExample.cpp:7
ordering
static enum @1096 ordering
gtsam::equals
Definition: Testable.h:112
TestResult
Definition: TestResult.h:26
y
Scalar * y
Definition: level1_cplx_impl.h:124
tree::f
Point2(* f)(const Point3 &, OptionalJacobian< 2, 3 >)
Definition: testExpression.cpp:218
gtsam::FactorGraph::size
size_t size() const
Definition: FactorGraph.h:297
V2
static const Point3 V2(-6.5, 3.5, 6.2)
getOrdering
static std::shared_ptr< Ordering > getOrdering(const std::vector< GeneralCamera > &cameras, const std::vector< Point3 > &landmarks)
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:155
gtsam
traits
Definition: SFMdata.h:40
error
static double error
Definition: testRot3.cpp:37
K
#define K
Definition: igam.h:8
NonlinearFactorGraph.h
Factor Graph consisting of non-linear factors.
gtsam::Values
Definition: Values.h:65
GeneralCamera
PinholeCamera< Cal3Bundler > GeneralCamera
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:44
l1
gtsam::Key l1
Definition: testLinearContainerFactor.cpp:24
std
Definition: BFloat16.h:88
Point3Constraint
NonlinearEquality< Point3 > Point3Constraint
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:47
p
float * p
Definition: Tutorial_Map_using.cpp:9
gtsam::GeneralSFMFactor
Definition: GeneralSFMFactor.h:59
gtsam::assert_equal
bool assert_equal(const Matrix &expected, const Matrix &actual, double tol)
Definition: Matrix.cpp:41
gtsam::Point3
Vector3 Point3
Definition: Point3.h:38
baseline
static const double baseline
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:115
Graph
Definition: testGeneralSFMFactor.cpp:49
graph
NonlinearFactorGraph graph
Definition: doc/Code/OdometryExample.cpp:2
Graph::addCameraConstraint
void addCameraConstraint(int j, const GeneralCamera &p)
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:57
gtsam::Ordering
Definition: inference/Ordering.h:33
ceres::Vector
Eigen::Matrix< double, Eigen::Dynamic, 1 > Vector
Definition: gtsam/3rdparty/ceres/eigen.h:38
Cal3Bundler.h
Calibration used by Bundler.
ceres::sqrt
Jet< T, N > sqrt(const Jet< T, N > &f)
Definition: jet.h:418
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Graph::addMeasurement
void addMeasurement(const int &i, const int &j, const Point2 &z, const SharedNoiseModel &model)
Definition: testGeneralSFMFactor_Cal3Bundler.cpp:52
R
Rot2 R(Rot2::fromAngle(0.1))
simple_graph::factor1
auto factor1
Definition: testJacobianFactor.cpp:196
S
DiscreteKey S(1, 2)
gtsam::FactorGraph::emplace_shared
IsDerived< DERIVEDFACTOR > emplace_shared(Args &&... args)
Emplace a shared pointer to factor of given type.
Definition: FactorGraph.h:153
gtsam::Symbol
Definition: inference/Symbol.h:37


gtsam
Author(s):
autogenerated on Wed Jan 1 2025 04:06:21